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Abstract

Metabolic dysfunction-associated steatotic liver disease (MA-
SLD) is now considered to be among the most prevalent 
chronic liver diseases worldwide. Its comprehensive man-
agement encompasses multiple stages, including risk assess-
ment, early detection, stratified intervention, and long-term 
follow-up. Among these, improving diagnostic accuracy and 
optimizing individualized therapeutic strategies remain key 
challenges in both research and clinical practice. In recent 
years, artificial intelligence and smart devices have devel-
oped rapidly and have gradually been applied in the medical 
field, offering novel tools and pathways for MASLD risk strati-
fication, non-invasive diagnosis, therapeutic evaluation, and 
patient self-management. This review summarizes the cur-
rent applications of artificial intelligence and smart devices 
in MASLD care, highlights their benefits and limitations, and 
discusses future directions to support precision diagnosis and 
treatment strategies.
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Introduction
Metabolic dysfunction-associated steatotic liver disease (MA-

SLD) is a chronic liver disease marked by the unregulated 
accumulation of lipids within the liver, which is closely linked 
to metabolic dysfunction. Patients generally exhibit at least 
one cardiovascular metabolic risk factor, such as overweight 
or obesity, type 2 diabetes, or other metabolic abnormali-
ties.1,2 Epidemiological estimates demonstrate that the glob-
al prevalence of MASLD has reached approximately 30% of 
the adult population.3,4 MASLD is among the most common 
chronic liver conditions globally, characterized by a gradual 
progression that starts with simple steatosis and may devel-
op into steatohepatitis, hepatic fibrosis, and eventually lead 
to cirrhosis or hepatocellular carcinoma.5 Timely identifica-
tion of individuals at elevated risk and the adoption of early, 
effective therapeutic strategies are critical to halting MASLD 
progression and enhancing long-term prognoses. MASLD is 
now recognized as the predominant form of fatty liver dis-
ease globally. Strengthening early detection and interven-
tion efforts in this population plays a pivotal role in prevent-
ing progression to advanced liver disease and mitigating the 
overall healthcare burden.6 The nomenclature of this disease 
has undergone two significant revisions. In 2020, in light 
of growing evidence linking obesity and metabolic dysfunc-
tion to disease pathogenesis, experts recommended replac-
ing the term nonalcoholic fatty liver disease (NAFLD) with 
metabolic associated fatty liver disease (MAFLD).7 Subse-
quently, in 2023, concerns about the potential stigmatization 
associated with “MAFLD” led major international hepatology 
associations to advocate for a further revision, officially re-
naming the disease as MASLD. This updated terminology re-
flects a more inclusive diagnostic framework, no longer ex-
cluding patients with comorbid chronic liver conditions such 
as viral hepatitis, alcohol use, or drug-induced liver dam-
age.2 Epidemiological studies in U.S. adults have reported 
the prevalence of NAFLD, MAFLD, and MASLD to be 18.5%, 
19.3%, and 20.8%, respectively, demonstrating a clear up-
ward trend.8 Remarkably, approximately 99% of individuals 
meeting NAFLD diagnostic criteria also fulfill the criteria for 
MASLD, highlighting a high degree of overlap in their clini-
cal phenotypes. Therefore, findings from previous studies 
conducted in NAFLD populations remain largely applicable to 
MASLD research and clinical practice.9–11
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Excessive hepatic fat deposition not only causes direct 
hepatocellular injury but also induces inflammatory respons-
es, fibrosis progression, and apoptosis. In addition, hepatic 
insulin resistance further exacerbates lipid accumulation and 
impairs insulin clearance, ultimately creating a vicious cycle 
of mutual reinforcement.12,13 Clinical evidence indicates that 
individuals with MASLD face significantly elevated risks of 
cardiovascular disease, with both prevalence and incidence 
surpassing those seen in the general population.14 Thus, 
clinical management of MASLD should emphasize compre-
hensive control of cardiometabolic comorbidities, including 
obesity, type 2 diabetes, dyslipidemia, and hypertension, to 
curb disease advancement and prevent complications.15 Cur-
rently, lifestyle intervention remains the foundational strat-
egy for treating MASLD, encompassing scientifically guided 
weight loss, balanced diet, and regular physical activity. When 
necessary, these approaches can be combined with pharma-
cotherapy or other adjunctive treatments. Additionally, early 
identification and correction of associated metabolic disorders 
are crucial steps in preventing disease progression.16 In re-
cent years, rapid advancements in artificial intelligence (AI) 
and smart devices have led to their increasing integration into 
medical practice. Particularly in MASLD research and clinical 
practice, AI and smart devices have shown great potential 
in risk prediction, disease screening, auxiliary diagnosis, and 
personalized treatment. This review synthesizes recent litera-
ture from databases including PubMed, Web of Science, and 
Google Scholar to summarize the current applications and 
emerging trends of AI and smart devices in MASLD manage-
ment, aiming to inform and guide future clinical strategies. 
Furthermore, this review differs from earlier work that mainly 
focused on imaging. It provides a broader synthesis that links 
AI algorithms, smart device applications, and ethical consid-
erations across the entire MASLD management pathway.

Overview of AI and smart devices
AI integrates a multitude of sophisticated algorithms, en-
compassing machine learning (ML), deep learning, natural 
language processing (NLP), data mining, and numerous oth-
ers. ML forms the backbone of this framework. It includes 
various supervised models such as convolutional neural net-
works (CNN), decision trees, support vector machines, ran-
dom forests, and gradient boosting algorithms. In addition, 
unsupervised, semi-supervised, and reinforcement learning 
methods are also incorporated (Fig. 1). Deep learning, a ma-
jor branch of ML, shows particular strength in recognizing 
complex patterns and handling high-dimensional data.

In medical research and clinical practice, AI is widely ap-
plied to the analysis and modeling of multidimensional data 
based on clinical indicators, biomarkers, and medical imag-
ing, significantly improving early disease detection capabili-
ties, diagnostic accuracy, and the efficiency of personalized 
treatment decision-making.17 In disease risk prediction, AI 
has the capacity to process large-scale patient data to un-
cover potential risk determinants and estimate the probabil-
ity of disease development. This facilitates the formulation of 
individualized preventive strategies tailored to each patient’s 
specific risk profile. In medical imaging recognition, AI ena-
bles rapid and accurate detection of underlying pathological 
features, improving diagnostic efficiency and significantly re-
ducing the risk of human misjudgment. Additionally, in the 
field of personalized treatment, AI can provide customized 
therapeutic recommendations based on patients’ unique clini-
cal and physiological parameters, thereby enhancing treat-
ment outcomes.17,18 The application of these technologies not 
only significantly reduces the time required for traditional data 

processing and decision-making but also helps overcome sub-
jective biases inherent in human analysis. This demonstrates 
important potential for managing chronic diseases, including 
MASLD. Meanwhile, advancements in smart device technol-
ogy have also provided new tools for health management. 
Devices such as smartphones, wearables, and portable medi-
cal monitors are now equipped with advanced sensors and 
multimodal data collection capabilities. They can continuously 
track critical health indicators, including body weight, waist-
to-hip ratio, heart rate, glucose levels, and blood pressure. 
These devices, combined with AI algorithms for data analysis, 
can provide users with personalized and dynamic health feed-
back and intervention recommendations. Figure 2 illustrates 
the application of AI technology and smart devices in man-
aging MASLD: through continuous monitoring and dynamic 
feedback to enable real-time health tracking and timely ad-
justment of intervention strategies based on data trends.19,20

Application of AI in MASLD risk prediction and diag-
nosis
While liver biopsy remains the gold standard for diagnosing 
steatotic liver disease, its invasive nature, associated bleed-
ing risks, and low patient acceptance restrict its feasibility 
for widespread use in population-level screening. In recent 
years, advances in AI technology have brought new break-
throughs in the early screening of MASLD. By synthesizing a 
broad spectrum of individual data, including clinical metrics 
such as body mass index (BMI), glucose and lipid profiles, 
genetic predispositions, and lifestyle habits, AI can establish 
multidimensional, personalized risk prediction models, signif-
icantly improving the efficiency of identifying high-risk indi-
viduals. For example, ML applied to large population cohorts 
can effectively identify high-risk individuals with potential 
progression from MASLD to metabolic dysfunction-associat-
ed steatohepatitis (MASH), thereby enabling the implemen-
tation of personalized, stratified intervention strategies.21 For 
imaging-based assessments of steatotic liver disease, com-
monly employed modalities include ultrasound, computed 
tomography (CT), and magnetic resonance imaging (MRI). 
Ultrasound is frequently used as a screening method due 
to its affordability, safety, and non-invasive characteristics. 
Nevertheless, its diagnostic sensitivity for early-stage or mild 
steatosis is suboptimal and heavily influenced by operator 
proficiency. CT can assess the degree of hepatic fat deposi-
tion but is susceptible to interference from factors such as 
iron overload and carries the risk of radiation exposure. MRI, 
with its high soft tissue resolution and excellent fat quantifi-
cation capability, is considered the current optimal non-inva-
sive quantitative method, though it is relatively more expen-
sive.22,23 With the continuous advancement of AI, especially 
ML and deep learning methods, their application in medical 
imaging analysis has become increasingly widespread. These 
AI-driven tools can autonomously derive numerous quanti-
tative imaging features and apply sophisticated algorithms 
or neural networks to support early diagnosis and treat-
ment tracking of fatty liver disease. Multiple studies have 
introduced AI-based models for imaging diagnosis of hepatic 
steatosis. Subgroup analyses reveal that whether employ-
ing classical ML techniques or more advanced deep learning 
architectures, these models demonstrate reliable diagnostic 
performance across different populations, reference stand-
ards, imaging techniques, and transfer learning contexts.24

AI-based predictive models using electronic health 
records (EHR) and laboratory data
AI shows great promise in processing EHR to construct risk 
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assessment models for MASLD. With the shift in disease 
nomenclature from NAFLD to MASLD, whether some non-
invasive tests previously used to predict NAFLD remain ap-
plicable to MASLD has become an urgent issue in research 
and clinical practice. Recent studies have shown that cer-
tain non-invasive test tools, such as the fatty liver index, 
still have strong discriminatory efficacy in identifying MASLD 
risk, suggesting that they retain application value in the new 
disease classification framework.25 With the continuous ad-
vancement of AI technology, combining non-invasive tests 
with AI algorithms is anticipated to further streamline MA-
SLD screening workflows—enhancing diagnostic efficiency 
and reducing the burden on healthcare systems. Currently, 
commonly used AI methods in EHR-based data analysis in-
clude ML, NLP, data mining techniques, and algorithms based 
on International Classification of Diseases coding. By com-

prehensively analyzing multidimensional information such 
as demographic characteristics, lifestyle, physical measure-
ments, and laboratory data contained in EHR, AI models can 
predict the risk of MASLD and assess its severity. Over time, 
research priorities have clearly evolved. Early studies mainly 
compared analyses of methodologies. More recent efforts 
have shifted toward building sophisticated, multimodal pre-
dictive systems. For example, Van Vleck et al.26 reported that 
NLP outperformed text search and ICD coding in identifying 
MASLD cases from EHR data. Later, Bonfiglio et al.27 devel-
oped a model to predict mortality risk, while Yuan et al.28 
created a screening tool for younger individuals based on 
standard physical examination indicators.

A significant step forward is seen in the N3-MASH model 
proposed by Zhang et al.29 This framework integrates CXCL10 
to reflect inflammation, CK-18 to capture apoptosis, and ad-

Fig. 1.  The collaborative operation model of artificial intelligence technology and smart devices. (Created in BioRender). CNN, convolutional neural net-
works; DT, decision tree; SVM, support vector machine; RF, random forest; GB, gradient boosting.
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justed BMI as a marker of lipid accumulation. Together, these 
variables substantially enhance the accuracy of MASH detec-
tion. The model marks a transition from dependence on con-
ventional clinical variables to a mechanism-oriented design 
incorporating novel biomarkers.

Furthermore, the application of AI in multi-omics research 
is unveiling new insights into disease mechanisms and bi-
omarker discovery. AI technology has also demonstrated 
broad application value in metagenomics and metabolomics 
research on various biological samples, especially in identify-
ing potential key genes and biomarkers for MASLD and its 
different stages of progression. For detailed research results, 
please refer to Table 1.21,26,28–34 In genomics and transcrip-
tomics, studies by Conway et al.35 and Park et al.36 have 
utilized deep learning to identify key genes and signaling 
pathways, such as the Notch pathway, associated with MASH 

severity and hepatic fat accumulation. In metabolomics and 
lipidomics, the work of teams like McGlinchey30 and Chiappi-
ni37 has systematically characterized distinct metabolite sig-
natures across disease stages, highlighting the central role 
of impaired fatty acid metabolism in MASH. Perveen et al.’s 
study, using decision tree analysis, identified high-density li-
poprotein levels as an important predictive marker for the 
development of hepatic steatosis.31 Additionally, AI-assisted 
analysis of gut microbiome data highlights the potential of 
microbial signatures for individualized diagnosis and inter-
vention.38 More importantly, AI’s integrative power is reshap-
ing risk assessment for MASLD. Instead of relying solely on 
superficial statistical associations, it enables models ground-
ed in biological mechanisms and refined patient subtypes. 
By combining clinical data with multi-omics information, AI 
systems can define disease endotypes and guide tailored 

Fig. 2.  Artificial intelligence and smart devices in clinical management of metabolic dysfunction-associated steatotic liver disease. (Created in BioRender).

Table 1.  EHR and laboratory data

Author Country Year Catego-
ries Methods Indicators Result

Zhang X et al.29 China 2025 MASH N3-MASH CXCL10, CK-18, BMI AUC: 0.857

Park IG et al.32 Korea 2024 MASLD SVM,RF,CNN Genomic DNA AUC: 0.93

Yuan Y et al.28 China 2024 MASLD Nomogram 
model

Age, Gender, BMI, Waist-
to-hip ratio, ALT, LDL-c, 
HDL-c, UA, and smoking

AUC: 0.875

McTeer M et al.21 UK et al. 2024 MASH XGBoost MASLD dataset in Europe AUC: 0.899

Zhu Q et al.33 China 2022 NASH RF 4 lipid molecules AUC: 0.923

McGlinchey 
AJ et al.30

Sweden 
et al.

2022 NAFLD ML Clinical data AUC: F (0–1 vs 2–4) 
= 0.746, F (0–2 
vs 3–4) = 0.778

Kordy K et al.34 USA 2021 NASH RF Oral and fecal microbiome, 
plasma metabolites

AUC: 0.99

Van Vleck 
TT et al.26

USA 2019 NAFLD NLP EHR Specificity: 89%, 
Sensitivity: 93%

Perveen S et al.31 Pakistan 2018 NAFLD DT EHR AUC: 0.73

AUC, area under the curve; CNN, convolutional neural networks; DT, decision tree; EHR, electronic health records; F, fibrosis; ML, machine learning; NLP, natural lan-
guage processing; NASH, non-alcoholic steatohepatitis; RF, random forest; SVM, support vector machine; XGBoost, eXtreme gradient boosting.
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therapeutic strategies. This progression signals a move to-
ward true precision medicine in metabolic liver disease.

AI-based diagnostic models using imaging data
AI technology, especially through ML and deep learning mod-
els, is playing a growing role in liver imaging, enhancing the 
accuracy and speed of disease identification and diagnosis. In 
clinical evaluation, MASLD imaging typically follows a three-
step sequence. Ultrasound serves as the first-line screening 
tool, with AI assisting in automated detection and grading of 
steatosis. CT often identifies hepatic fat incidentally during 
unrelated scans, where AI can quantify fat content retrospec-
tively. MRI then provides confirmation and precise quantifica-
tion, while AI improves workflow efficiency and interpretive 
accuracy. In recent years, researchers have developed vari-
ous quantitative fat analysis methods based on ultrasound, 
CT, and MRI, enabling clinicians to more accurately assess 
the degree of hepatic lipid accumulation and fibrosis stag-
ing. These methods achieve precise quantification of steato-
sis and fibrosis by automatically extracting key imaging fea-
tures, providing critical support for early diagnosis, disease 
staging, and intervention decision-making.39

Ultrasound imaging: Ultrasound examination, as a 
commonly used imaging modality for diagnosing MASLD, is 
widely applied in clinical practice. Nonetheless, several limi-
tations persist. Diagnostic accuracy still depends on operator 
expertise and subjective interpretation. Ultrasound, although 
sensitive for moderate to advanced steatosis, struggles with 
mild cases. Subtle steatosis remains difficult to detect, as 
assessments largely rely on qualitative echogenicity rather 
than quantitative measures.40 Traditional ultrasound imag-
ing is primarily based on the nonlinear interaction between 
linearly propagated ultrasonic pulses and tissues, generating 
harmonic frequencies. Among these, the second harmonic is 
widely used in clinical image optimization due to its improved 
signal-to-noise ratio, clear boundaries, and reduced artifacts. 
However, while qualitative features such as enhanced ech-
oes can be detected when hepatic fat content is elevated, 
sensitivity remains insufficient for mild fat accumulation. To 
overcome the limitations of traditional ultrasound, various 
quantitative ultrasound techniques have been developed in 
recent years, including elastography, echo signal analysis, 
and speckle pattern modeling. These methods provide more 
precise quantitative data on tissue characteristics. For exam-
ple, ultrasound elastography applies acoustic radiation force 
pulses via a transducer to measure shear wave velocity with-
in liver tissue, which correlates with tissue stiffness, serving 
as a non-invasive indicator of fibrosis. Additionally, some al-
gorithms convert the degree of ultrasound attenuation into a 
controlled attenuation parameter to quantify hepatic fat con-
tent. However, these techniques are susceptible to interfer-
ence from subcutaneous fat thickness and intercostal space 
width in obese individuals, which can affect the accuracy of 
the measurements.41 The integration of AI into ultrasound 
diagnostics has opened new avenues for MASLD detection. 
By integrating multiple ultrasound imaging features, AI can 
more accurately assess liver structure and functional status. 
In recent years, researchers have conducted several explora-
tory studies in this field, with relevant findings summarized in 
Table 2.42–61 Various research groups have incorporated deep 
learning, CNN, and large language models to significantly 
boost the diagnostic accuracy and efficiency of sonographic 
imaging. Through algorithm optimization and improvements 
in image processing techniques, AI has enabled quantita-
tive analysis and grading assessment based on traditional 
ultrasound, thereby providing a more convenient and reliable 
approach for MASLD screening and classification. A critical 

synthesis of recent advancements highlights several distinct, 
yet complementary, strategies for applying AI to ultrasound-
based MASLD diagnosis. These developments move beyond 
mere automation. They represent a fundamental expansion 
of ultrasound’s diagnostic capability. The first approach cent-
ers on improving diagnostic accuracy directly from standard 
B-mode images. For instance, Kaffas AE et al.42 showed that 
a deep learning framework could markedly increase both 
the sensitivity and the accuracy of MASLD diagnosis using 
routine ultrasound scans. Their findings suggest that AI can 
uncover subtle imaging cues overlooked in manual interpre-
tation. A second line of work focuses on the automation and 
standardization of semi-quantitative metrics. This strategy 
aims to make results more reproducible and less depend-
ent on operator expertise. The AI system developed by the 
Santoro group illustrates this point well.43 It automatically 
calculates the liver-to-kidney ratio, minimizing inter-operator 
variation and improving consistency across centers. Most no-
tably, a third and transformative direction uses AI to derive 
quantitative data directly from conventional scans. Models 
trained on extensive, multi-source datasets that include dif-
ferent scanners and imaging protocols can now estimate liver 
fat content with high precision. Remarkably, their perfor-
mance rivals, and in some cases exceeds, that of specialized 
tools such as FibroScan.62 Collectively, these studies mark a 
transformative shift for ultrasound in MASLD. AI is not only 
augmenting conventional practices but also equipping the 
modality with novel quantitative capabilities, once exclusive 
to advanced technologies, thereby significantly boosting its 
clinical utility.

CT imaging: CT remains a widely utilized tool in clini-
cal imaging, offering reliable quantification of liver fat, yet 
its dependence on manual region-of-interest placement 
makes the process slow, operator-dependent, and unsuit-
able for large-scale screening. This inherent limitation has 
positioned full automation as both the central goal and the 
main advantage of AI in CT-based MASLD evaluation. Recent 
research efforts have shifted toward automating CT image 
analysis using deep learning approaches to facilitate MASLD 
diagnosis. This technology automatically segments the liver 
region, identifies features of fat deposition, and subsequently 
quantifies the degree of hepatic steatosis, thereby providing 
clinicians with supportive diagnostic information. As summa-
rized in Table 3,63–71 the research trajectory clearly shows a 
shift from proof-of-concept automation to validation in large-
scale, real-world populations. Following the early validation 
by Graffy et al.,63 Martín-Saladich et al.64 advanced the field 
with a fully automated voxel-level framework. Their system 
achieved excellent cross-device reproducibility and eliminat-
ed manual input. The deep learning model aligned closely 
with manual readings and captured expected associations 
between steatosis, age, and BMI, reinforcing the biological 
credibility of AI-derived quantifications. Further refinements 
have aimed to improve accuracy and integration into clinical 
workflows. Studies by Prinz et al.65 and Huo et al.,66 both us-
ing CNN architectures, reported consistently high agreement 
between automated and manual fat quantification across 
multiple metrics. Collectively, the evidence indicates that AI 
is no longer merely replicating human measurements. It fre-
quently surpasses them in speed, consistency, and spatial 
coverage, extending analysis from limited region-of-interest 
samples to whole-liver assessment. In essence, AI-driven 
automation is transforming CT from a qualitative or semi-
quantitative method into a robust, high-throughput platform 
for MASLD screening and monitoring. By eliminating the bot-
tlenecks of manual analysis, AI unlocks new potential for 
opportunistic screening within the vast number of CT scans 
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acquired for unrelated reasons. This shift adds significant 
value to everyday imaging practice and paves the way for 
population-level steatosis surveillance.

MRI imaging: MRI, as a non-invasive technique for he-
patic fat quantification, has been widely used in both re-
search and clinical practice. Common MRI-based fat quan-
tification methods include magnetic resonance spectroscopy 
(MRS), fat-suppressed imaging, water-fat separation tech-
niques, and proton density fat fraction (PDFF). Among these, 
MRS is considered one of the most precise for non-invasively 
quantifying intrahepatic fat. It can sensitively detect meta-
bolic changes and pathophysiological states in living tissue 
and has advantages such as low measurement variability, 
high correlation with histology, and results that are not af-
fected by liver fibrosis, iron deposition, or dietary factors.72 
However, a limitation of MRS is that it can only quantify fat 
content in a single localized region, making it difficult to 
comprehensively assess fat distribution throughout the en-
tire liver. In contrast, the PDFF technology can reflect the fat 
content of the entire organ. After multi-factor correction, its 
quantitative accuracy is highly consistent with MRS and is 
regarded as a dependable indicator for assessing steatosis. 
Both MRI-PDFF and MRS have demonstrated strong concord-
ance with histopathological steatosis grading and offer high 
diagnostic accuracy for the clinical classification of hepatic fat 
content.73,74 Rather than revalidating MRI-based fat quanti-
fication—which is already well established—current research 
focuses on workflow optimization, computational efficiency, 
and improved clinical accessibility. As outlined in Table 4,74–81 
recent deep learning advances are systematically resolv-
ing major limitations in MRI analysis. A leading direction 
involves automating labor-intensive steps. Martí-Aguado et 
al.75 developed a CNN algorithm for automated whole-liver 
segmentation, achieving fat quantification results with strong 
histological concordance. Another stream of innovation tar-
gets refinement of the PDFF metric through advanced neu-

ral networks. With the advancement of AI technology, per-
formance evaluation of metrics such as PDFF has also been 
optimized. Wang et al.76 used deep learning to infer PDFF 
values with high precision, reinforcing its reliability as an im-
aging biomarker. Meneses et al.77 proposed the Variable Echo 
Times Neural Network, which delivered more accurate PDFF 
estimation than conventional architectures. Despite these 
technical gains, clinical translation of MRI-PDFF and MRS re-
mains constrained by high cost, specialized hardware, and 
long acquisition times. Consequently, these modalities are 
mostly applied in research contexts or for evaluating high-
risk patients rather than general screening. Thus, although 
AI has greatly advanced the precision, automation, and in-
terpretability of MRI-based fat quantification, these methods 
remain endpoints within the diagnostic pathway, not tools for 
population-level screening.

AI-based analytical models for liver histopathology
Liver biopsy continues to serve as the diagnostic gold stand-
ard for MASLD. However, its invasiveness, sampling error, and 
subjective scoring limit its routine use. In response, AI and 
digital pathology are redefining histological assessment, of-
fering objective, reproducible, and scalable tissue evaluation. 
New algorithms can now automatically detect and quantify 
key histological features from biopsy samples, such as fat ac-
cumulation, lobular inflammation, ballooning degeneration, 
and fibrosis. The results demonstrate high concordance with 
assessments made by experienced pathologists. A critical re-
view of ongoing research reveals a multi-faceted evolution in 
AI-assisted liver pathology. This shift is not simply incremen-
tal—it reflects a conceptual reorientation toward algorithm-
supported diagnostics. AI-driven image analysis systems can 
perform precise evaluations of digitized histological slides, 
automatically identifying core pathological changes associ-
ated with MASLD. Among these, hepatocyte ballooning is a 
key morphological marker for diagnosing MASLD. The ad-

Table 3.  CT

Author Country Year Categories Methods Sample size Reference standard Result

Kim HY et al.67 Korea 2025 Hepatic 
steatosis

DL 3,620 
subjects

Liver biopsy AUC: 0.868

Vong T et al.68 USA 2025 Hepatic 
steatosis

LLM 200 adults Labeled CT reports Accuracy: 0.988, 
Sensitivity: 0.98, 
Specificity: 1

Martín-Saladich 
Q et al.64

Spain 2024 MAFLD nn-UNet 39 patients Manually assessed 
by specialists

AUC: 0.94

Yoo J et al.69 Korea 2024 Hepatic 
steatosis

DL 362 adults MRS-PDFF AUC: 0.817

Jeon SK 
et al.70

Korea 2024 Hepatic 
steatosis

DL 252 
participants

MRS-PDFF AUC: 0.806

Prinz S et al.65 Germany 2023 Hepatic 
steatosis

CNN 197 patients Manual ROIs 0.75<AUC<0.87

Pickhardt 
PJ et al.71

USA 
et al.

2021 Hepatic 
steatosis

DL 1,204 
healthy 
adults

Unenhanced CT AUC: PDFF ≥ 5% 
= 0.669, PDFF 
≥ 10% = 0.854

Graffy PM 
et al.63

Madison 2019 NAFLD DL 9,552 adults The manual Hounsfield 
unit measures

R2: 0.92

Huo Y et al.66 USA 2019 NAFLD CNN 246 subjects Abdominal CT scans with 
manual liver segmentation

Pearson 
correlations 
= 0.94

CT, computed tomography; AUC, area under the curve; CNN, convolutional neural networks; DL, deep learning; LLM, large language models; nn-UNet, neural network-
UNet; R2, coefficient of determination; ROI, region of interest.
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vancement of digital pathology helps overcome limitations 
of traditional manual slide reading, such as low annotation 
efficiency and high subjective variability, by enhancing di-
agnostic objectivity and consistency through high-resolution 
image acquisition and algorithmic analysis. The combination 
of high-resolution slide digitization with algorithmic analysis 
enhances diagnostic precision and facilitates standardization 
across centers. Yet, methodological gaps persist. The scar-
city of large, annotated, and diverse datasets limits gener-
alizability, especially across staining methods, scanners, and 
populations. Future research urgently needs to construct a 
large-scale, standardized image database of ballooning de-
generation in liver cells and further optimize algorithm struc-
tures (such as introducing the Transformer architecture) to 
improve recognition accuracy. As generative AI continues 
to mature, the establishment of standardized performance 
criteria will be crucial for validating its role in augmenting 
diagnostic consistency.82 Traditional ML models typically de-
pend on extensive labeled datasets to reach high precision, 
and their deployment in clinical practice is often hampered 
by concerns over patient privacy and data sensitivity. To this 
end, the emerging quantum machine learning (QML), as an 
interdisciplinary technology that fuses quantum computing 
and classical ML, shows stronger generalization ability and 
modeling accuracy. Lusnig et al.83 demonstrated the poten-
tial of hybrid quantum–classical neural networks, achieving 
97% accuracy in classifying biopsy slides. This approach per-
formed particularly well under data-limited conditions, sug-
gesting that QML may address two persistent challenges: 
the need for extensive annotation and the protection of data 
privacy. Beyond static diagnosis, AI is now enabling dynam-
ic disease monitoring. Naoumov et al.84 integrated AI with 
digital pathology to track histological changes during MASH 
therapy. Their system provided greater sensitivity in detect-
ing fibrosis regression and enabled more dynamic evaluation 
of therapeutic efficacy. Together, these advances represent 
more than automation. They signal a paradigm shift—from 

subjective interpretation toward reproducible, data-driven 
quantification—reshaping the epistemological foundation of 
liver pathology itself.

Treatment of MASLD
The treatment of MASLD primarily includes lifestyle modi-
fication and pharmacotherapy (Table 5).85–94 The conver-
gence of AI and smart devices is reshaping these traditional 
strategies, promoting a shift from standardized care to dy-
namic, personalized, and data-driven management. In life-
style management, patients are advised to control weight, 
limit alcohol intake, improve dietary structure, and adhere 
to regular exercise. In terms of drug therapy, several drug 
candidates are currently in clinical trials. In addition, patients 
with chronic hepatitis B who have concomitant metabolic ab-
normalities (such as glucose dysregulation, dyslipidemia, or 
overweight) should also be comprehensively evaluated and 
actively intervene with their metabolic markers to reduce the 
risk of MASLD progression. Probiotic therapy has also been 
recognized as potentially valuable in the management of MA-
SLD. It has been shown that probiotics can play a positive 
role in improving liver enzyme levels, regulating lipid me-
tabolism, promoting weight control, and alleviating insulin 
resistance by modulating intestinal flora.95 Bariatric surgery 
has emerged as an alternative treatment option for patients 
with MASLD combined with obesity who do not respond well 
to lifestyle interventions and medications. Chen S et al.96 
used a multi-omics approach to analyze the support for the 
use of sleeve gastrectomy as an effective means of amelio-
rating hepatic steatosis and inflammation when other weight 
loss strategies are ineffective.

Lifestyle interventions
Lifestyle-related factors play a pivotal role in the onset and 
progression of MASLD. Yuan et al.97 demonstrated that in-

Table 4.  MRI

Author Country Year Catego-
ries

Meth-
ods Sample size Reference 

standard Result

Meneses 
JP et al.77

Chile 2025 Hepatic 
steatosis

VET-
Net

188 subjects MRI-PDFF R2: 0.87–0.98

Li S et al.78 China 2024 NAFLD DL 20 subjects Graph-cut 
algorithm

No significant difference

Wang K 
et al.76

USA 2023 NAFLD CNN 292 
participants

CSE-MRI CNN-inferred PDFF showed 
superior agreement with reference 
(ICC = 0.99, bias = −0.19%)

Bastati N 
et al.79

Austria 2023 NAFLD UDC 46 patients Histology AUC: 0.85

Kim JW 
et al.74

Korea 2022 NAFLD MRS, 
MRI-
PDFF

47 patients Biopsy AUC: ≥S2 (MRS) = 0.860, (MRI-
PDFF) = 0.846, ≥S3 (MRS) = 
0.878, (MRI-PDFF) = 0.855

Martí-
Aguado D 
et al.75

Spain 2022 NAFLD DL 165 
participants

Biopsy AUC: 0.97

Pollack BL 
et al.80

Pittsburgh 2021 NAFLD CNN 149 patients Biopsy AUC: 0.84

Cho Y et 
al.81

Korea 2021 NAFLD DL 77 samples Manual 
Segmentation

Step 3: Dice Coefficients 0.94 ± 
0.01, Bland-Altman bias −0.67%

MRI, magnetic resonance imaging; AUC, area under the curve; CNN, convolutional neural networks; DL, deep learning; UDC, unsupervised deep clustering; VET-Net, 
variable echo times neural network; ICC, intraclass correlation coefficient; R2, coefficient of determination; ROI, regions of interest; S, steatosis grades; WLS, whole-
liver segmentation.



Journal of Clinical and Translational Hepatology 2026 vol. 14(1)  |  59–75 67

Zhu W. et al: AI and smart devices in MASLD

tensive lifestyle intervention can reverse hepatic fibrosis in 
MASH, with AI-assisted imaging revealing the most evident 
regression in the portal region. However, maintaining ad-
herence to such interventions remains difficult—particularly 
among socioeconomically disadvantaged groups, who often 
face higher MASLD risk due to poor dietary habits.98 AI-ena-
bled smart devices provide scalable and individualized solu-
tions for this challenge.

In recent years, with the help of smart devices combined 
with AI algorithms, clinicians can achieve real-time monitor-
ing of patients’ diet, physical activity, and metabolism-relat-
ed indicators, and then generate personalized intervention 
programs. For example, a model based on Gradient Boosting 
Regression predicts individual postprandial glucose fluctua-
tions and combines gut microbiome data with dietary habits 
to optimize an individualized dietary structure.99 They are 
especially valuable for patients with prediabetes or type 2 
diabetes and MASLD, where precise glycemic control is es-
sential.

Nutritional strategies are fundamental in the prevention 
and management of MASLD. Among various dietary pat-
terns, the Mediterranean diet has shown considerable effi-
cacy in lowering hepatic lipid accumulation and improving 
metabolic health.100 With the support of smart devices and 
AI, the implementation of medical nutrition therapy is more 

efficient and precise. Patients can use the image recognition 
feature to record their daily diet. The system automatically 
analyzes the nutritional content and guides them to follow 
a healthy diet structure while dynamically adjusting energy 
intake based on real-time data. It has been demonstrated 
that this type of intelligent system is effective in improving 
liver triglyceride levels and other metabolic parameters.101 
This scenario suits motivated individuals who benefit from 
structured, feedback-driven dietary support.

With advancements in digital health, smart devices now 
offer capabilities such as remote patient monitoring and on-
line follow-up, allowing healthcare providers to track real-
time fluctuations in liver-related biomarkers—including ala-
nine aminotransferase and aspartate transaminase—as well 
as body weight. This continuous monitoring facilitates timely 
treatment adjustments based on a patient’s clinical progres-
sion. This is equally useful for patients undergoing new drug 
therapies or those with advanced fibrosis who require close 
follow-up.

AI chatbots are also gradually playing a role in assisted 
management, providing not only medication reminders and 
health education but also basic psychological support that 
can help improve patient compliance. Related studies show 
that some AI chatbots currently score high on health-related 
questions, but clinical application still requires professional 

Table 5.  Treatment

Author Country Year Cat-
egories Drugs Methods Reference Result

Harrison 
SA et al.90

USA 2025 MASH FFAR1/FFAR4 agonist RCT Placebo Response rates: 
300 mg = 29.3%, 
placebo = 11.3%

Ozlu Karahan 
T et al.91

Turkey 2025 MASLD NA LLM Guidelines Accuracy: mean energy 
= 91.3 ± 11.0%

Zhang L 
et al.88

China 2025 MAFLD Qigui Jiangzhi 
Formula (QGJZF)

AlphaFold-
AI

pTM scores 
(range 0–1)

pTM scores: PRKAA2 = 
0.97, SIRT1 = 0.93

Harrison 
SA et al.85

UK 2024 NASH Resmetirom RCT Placebo NASH resolution rate: 
100 mg = 29.9%, 
placebo = 9.7%

Wang Y 
et al.87

China 2024 NASH LiDi FGF21 LiDi 
platform

Baseline NAS scores: low-dose 
= 3.83 ± 0.98, high-
dose = 3.33 ± 0.82, 
baseline = 6.00 ± 0.63

Newsome 
PN et al.92

UK et al. 2023 NASH AOC3 inhibitor Double-
blind, 
placebo-
controlled

Placebo AOC3 activity relative 
to baseline: 10 mg = 
3.3%, Placebo = 90.4%

Saldarriaga 
OA et al.89

USA 2023 MASLD NA DL Key 
Findings

Upregulated Targets: 
CCR2, CCR5, CCL2, 
CCL5, LGALS3

Yu H et al.93 China 2023 NAFLD Aescin (Aes) HepG2 cell 
models

/ Aes facilitates Nrf2 
nuclear translocation

Sessa L 
et al.86

Italy 
et al.

2023 NASH 5-hydroxytryptamine 
2A receptor 
(5-HT2AR)

SoftMining 
Platform

5HT2AR-
CHO-K1 
cells

Competitive binding 
studies in 5HT2AR-
CHO-K1 cells validated 
the in silico prediction

Lee WY 
et al.94

Korea 2022 NAFLD Flavonoids Machine-
learning 
model: 
AI-DTI

HepG2/
AML12 cell 
models

Screening and 
functional validation of 
candidate flavonoids

ALT, alanine aminotransferase; AOC3, amine oxidase copper-containing 3; DL, deep learning; LiDi, lipidation-dimerization; LLM, large language models; NASH, non-
alcoholic steatohepatitis; RCT, randomized controlled trial; pTM, predicted tem plate modeling; NAS scores, nonalcoholic fatty liver disease activity score.
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medical judgment. With continued algorithm optimization, 
their clinical practicality is expected to improve further in the 
future.102 In overburdened healthcare systems, AI chatbots 
and digital companions can also serve as first-line educa-
tional tools, addressing common patient concerns and rein-
forcing adherence.

AI-powered systems further support individualized care 
by integrating clinical data, laboratory results, and histo-
pathological findings to formulate tailored therapeutic plans 
that span lifestyle modifications and pharmacologic options. 
Mobile health applications and wearable devices are becom-
ing increasingly valuable tools in MASLD care. These tools 
enable the ongoing collection of behavioral data, including 
physical activity, dietary intake, and sleep metrics, which 
supports more precise and dynamic intervention strate-
gies.103 Exercise is another widely accepted intervention 
with proven benefits for MASLD. Regular physical activity 
not only contributes to weight reduction and decreased 
hepatic fat but also elevates high-density lipoprotein cho-
lesterol levels.104 A health management app that combines 
AI algorithms can help patients set personalized exercise 
plans and dynamically adjust them based on feedback from 
wearable sensors. At the same time, these devices can also 
monitor indicators such as weight and waist circumference 
in real time and work with AI models to predict the poten-
tial effects of weight loss on liver fat improvement. Studies 
have shown that achieving a weight loss of over 10% can 
result in substantial improvements in MASH and liver fibro-
sis severity.105 Closed-loop feedback mechanisms enhance 
motivation, especially for individuals struggling with weight 
maintenance, by offering concrete targets and continuous 
reinforcement.

Drug development
While pharmacological research into MASLD therapies has 
advanced in recent years, only a limited number of medica-
tions have received approval. Drugs currently in late-stage 
clinical development include incretin-based therapies like 
glucagon-like peptide-1 and its multi-agonists, metabolic 
modulators like peroxisome proliferator-activated receptor, 
fibroblast growth factor 21 (FGF21), and thyroid hormone 
receptor β (THR-β) agonists, or novel drugs targeting new 
mechanisms, such as fatty acid synthase inhibitors.106,107 
The development of AI technology has significantly acceler-
ated the research and development process of MASLD-relat-
ed drugs in multiple stages. Through virtual screening, struc-
tural prediction, and multi-omics integration analysis, AI has 
not only promoted new drug discovery but also driven the 
re-development of existing drugs for new indications. For ex-
ample, Resmetirom is a highly selective THR-β agonist. A no-
table breakthrough occurred in 2024 when the U.S. Food and 
Drug Administration approved Resmetirom as the first drug 
for treating MASH. AI-assisted analysis was extensively used 
in the target identification, mechanism elucidation, and clini-
cal study design of this drug. In its pivotal Phase III clinical 
trial, AI algorithms were used to quantitatively assess chang-
es in liver fibrosis before and after treatment, demonstrating 
that Resmetirom has definitive efficacy in significantly im-
proving liver fibrosis.85,108,109 In addition, the potential of AI 
in drug screening and indication expansion continues to be 
validated. HuX et al. utilized the DiscoveryStudio19 platform, 
which integrates virtual screening, molecular docking, ADME 
property prediction, and toxicity assessment, to screen po-
tential farnesoid X receptor agonists, providing a new drug 
candidate idea for MASH treatment.110 Similarly, Sessa L and 
colleagues leveraged AI methodologies to validate the thera-
peutic potential of the 5-hydroxytryptamine 2A receptor, 

identifying its antagonists as promising candidates for MASH 
therapy.86 In the field of protein therapy research, Wang Y’s 
team has developed a new form of bioactive FGF21 based 
on the “lipidation-dimerization” platform, named LiDi FGF21. 
This molecule demonstrates superior pharmacological prop-
erties, expanding the application prospects of protein-based 
drugs in the treatment of MASLD.87 AI technology also pro-
vides new insights into the modernization of traditional Chi-
nese medicine. Zhang L et al. identified potential target pro-
teins for the traditional Chinese medicine compound QGJZF 
in MASLD using the SymMap database and predicted the 
structures of its key proteins using AlphaFold, revealing that 
it may exert anti-adipogenic and anti-inflammatory effects 
through the AMPK/SIRT1-TFEB pathway.88 Furthermore, Sal-
darriaga et al. applied deep learning to multi-dimensional 
datasets in fatty liver fibrosis, identifying disease-stage-de-
pendent heterogeneity in macrophage populations and high-
lighting CCR2 and Galectin-3 as potential therapeutic targets 
in advanced MASLD.89

In summary, AI is fundamentally reshaping MASLD drug 
discovery by accelerating target identification, optimizing 
clinical trials, and enhancing predictive profiling.111

Ethical, regulatory, and data security considerations
Integrating AI and smart devices into MASLD care thus holds 
great promise for improving diagnostic precision and thera-
peutic outcomes.112 However, its real-world application raises 
complex ethical, regulatory, and data security concerns (Fig. 
3). Therefore, the development and deployment of AI must 
align with ethically grounded frameworks, consistent with 
the World Health Organization guidance on the Ethics and 
Governance of AI for Health. The World Health Organization 
identifies six guiding principles: protecting autonomy; ad-
vancing human welfare and safety; ensuring transparency 
and intelligibility; reinforcing accountability; promoting eq-
uity and inclusiveness; and encouraging responsiveness and 
sustainability.113

Recent analyses reveal that bias and fairness dominate 
ethical discourse, followed by concerns about safety, reli-
ability, transparency, accountability, model misuse, and pri-
vacy—particularly in relation to large language models.114,115 
Concurrently, the evolution of AI operates within estab-
lished regulatory structures, which define critical operational 
boundaries and reinforce the protection of personal data and 
privacy.116 As jurisdictions adapt their own legal standards, 
an international consensus toward harmonized regulation is 
increasingly essential.

From a technical standpoint, privacy-preserving tech-
niques, such as federated learning and differential privacy, 
are vital to building multi-layered safeguards. Only through 
such a multidisciplinary approach can these innovative tools 
be deployed safely and equitably, upholding the rights and 
welfare of individuals in real-world settings.

Ethical AI for MASLD
Algorithmic bias and health disparities: The perfor-
mance and generalizability of AI models depend critically 
on the diversity of their training data. When development 
datasets are disproportionately sourced from limited demo-
graphic segments, such as particular ethnic, geographic, or 
socioeconomic groups, models are prone to substantial per-
formance decline in clinically underrepresented populations. 
This not only reduces clinical reliability but may also amplify 
existing health inequities.117 To mitigate such effects, it is 
essential to systematically construct diverse and inclusive 
training cohorts and incorporate bias detection and mitiga-
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tion protocols across the entire model lifecycle. These strat-
egies should consider local context—target demographics, 
deployment settings, algorithm type, and the specific biases 
being addressed.118

Transparency and explainability: Many advanced AI 
systems, particularly deep learning–based systems, func-
tion as “black boxes” due to their inherently opaque internal 
decision logic, which remains largely inaccessible to human 
interpretation. For healthcare providers to trust AI-based di-
agnostic aids, such as hepatic steatosis grading, transpar-
ency in algorithmic reasoning is essential.119 Explainable AI 
(XAI) addresses this need by employing both global and local 
interpretability techniques to uncover salient features con-
tributing to predictive outcomes. This capacity to elucidate 
model behavior is critical for fostering informed clinical ac-
ceptance and enabling the responsible embedding of AI tools 
into medical practice.120

Accountability and human oversight: Excessive de-
pendence on AI in medical contexts can lead to significant 
errors in areas such as predictive analytics, system over-
sight, device selection, and even clinical decision-making. 
Many AI models are often inadequately trained on specific 
features, such as dialects and medical colloquialisms; they 
risk generating inaccurate diagnoses, medication explana-

tions, or treatment recommendations.121 It is therefore es-
sential to reaffirm that AI serves strictly as an adjunctive 
decision-support mechanism rather than as an autonomous 
clinical authority. The final judgment and accountability for 
all diagnostic or therapeutic decisions must rest with quali-
fied healthcare professionals. These practitioners must criti-
cally appraise algorithm-generated suggestions and retain 
the ultimate decision-making power, ensuring consistent hu-
man oversight and intervention throughout patient care.

Regulatory frameworks
The development and deployment of medical AI must occur 
within a robust regulatory framework, with the core objective 
of safeguarding patient data privacy and security. Several 
major frameworks currently provide guidance for this evolv-
ing landscape.

Health Insurance Portability and Accountability Act 
(HIPAA): In the United States, HIPAA stands as a founda-
tional statute safeguarding Protected Health Information.122 
Despite its importance, HIPAA’s jurisdiction is incomplete—it 
excludes data handled by non-covered entities, omits pa-
tient-generated content, and overlooks extensive non-health 
datasets that can indirectly reveal health conditions. To es-
tablish comprehensive protection for the health information 

Fig. 3.  Responsible Artificial intelligence in metabolic dysfunction-associated steatotic liver disease: A framework built on ethics, regulation, and 
security. (Created in BioRender). AI, artificial intelligence; MASLD, metabolic dysfunction-associated steatotic liver disease; HIPAA, health insurance portability and 
accountability act; GDPR, general data protection regulation; PDPO, personal data (privacy) ordinance; APPI, act on the protection of personal information.
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ecosystem, it is imperative to either expand HIPAA’s applica-
bility or create a separate regulatory regime for currently un-
covered health-related data. Proposed legislative pathways 
include enacting a general health data protection rule sup-
plemented by specific provisions for different data proces-
sors, or adopting a unified framework inspired by the EU’s 
General Data Protection Regulation (GDPR) that applies to all 
personal data processors while incorporating dedicated rules 
for health information.123

GDPR: The European Union’s GDPR regulation has be-
come a global benchmark for personal data governance.124 
It mandates strict adherence to the principles of lawfulness, 
fairness, and transparency in all stages of data processing. 
Under GDPR, information must be collected for clearly de-
fined and legitimate purposes (purpose limitation), and only 
the minimal data necessary for those purposes may be pro-
cessed (data minimization). Controllers remain fully account-
able for compliance with these standards. In MASLD-related 
studies involving EU participants, explicit informed consent 
and transparent data handling practices are indispensable, 
reflecting the regulation’s emphasis on autonomy and ac-
countability.

Other international frameworks: Comparable data 
protection systems have been enacted in multiple jurisdic-
tions. Prominent examples encompass the Personal Data 
(Privacy) Ordinance(PDPO) in Hong Kong, China125 and Ja-
pan’s Act on the Protection of Personal Information(APPI).126 
Both are grounded in the shared values of purpose limitation, 
proportionality, and accountability, offering principled over-
sight of personal data processing.

Nevertheless, legal compliance alone does not guarantee 
full protection.127,128 It underscores the necessity for multi-
layered privacy-preserving architectures in AI-driven MASLD 
research.

Data privacy and security strategies
To navigate these complex regulatory terrains and mitigate 
privacy risks, advanced technical safeguards have been pro-
gressively incorporated into AI systems.129

De-identification: De-identification aims to remove or 
obscure personal identifiers from data. In structured data, 
methods such as polymorphic encryption have improved re-
silience against re-identification while maintaining analytical 
utility. Moreover, large language models are now capable of 
achieving higher accuracy in automatic de-identification of 
unstructured text, substantially improving privacy protection 
for clinical narratives.130

Differential privacy: Differential privacy introduces cali-
brated random noise into datasets or query results, thereby 
ensuring that the inclusion or exclusion of any single indi-
vidual cannot be inferred.131 This approach ensures that the 
presence or absence of any individual in the dataset cannot 
be inferred from the analysis results, while still preserving 
the accuracy of statistical findings at the aggregate level.

Federated learning: Federated learning enables distrib-
uted model training across multiple institutions without the 
exchange of raw data. This paradigm is particularly advanta-
geous for multicenter MASLD studies, allowing algorithmic 
generalization and cross-population robustness while keep-
ing sensitive data localized within each contributing hospital 
or research site.132

Synthetic data generation: Synthetic data technology 
creates artificial datasets that mimic the statistical properties 
of real-world data but exclude actual patient information.133 
Such datasets can be used safely for model testing and al-
gorithm refinement, effectively eliminating privacy concerns 
inherent in traditional EHR-based development.

Clinical translation of AI in MASLD: Beneficial popu-
lations, clinical scenarios, and future pathways
This section explores the transition of AI from research pro-
totypes to real-world applications in MASLD management. It 
identifies the clinicians and patient populations most likely to 
benefit and highlights key clinical scenarios where these tools 
add measurable value. Within this framework, AI emerges 
not merely as a computational instrument but as a strategic 
enabler of precision medicine and more equitable healthcare 
delivery.134

Populations that would benefit most
AI technologies hold considerable promise for improving MA-
SLD management—enhancing diagnostic accuracy, facilitat-
ing early intervention, and widening access to care, espe-
cially in resource-limited settings.135 They also contribute to 
objective evaluation metrics in clinical research and thera-
peutic trials.

Healthcare professionals: For physicians in hepatology, 
radiology, or primary care, AI-based decision support offers 
substantial gains. By reducing observer variability and high-
lighting subtle imaging features, such systems improve diag-
nostic confidence and consistency. They can also automate 
repetitive workflows—such as steatosis quantification—and 
prioritize high-risk cases. For junior clinicians or those out-
side tertiary centers, these tools function as valuable learn-
ing aids and clinical references.136

Populations in resource-limited settings: In un-
derserved areas lacking hepatology expertise, AI-enabled 
portable ultrasound and automated image analysis can de-
centralize screening from hospitals to communities. This 
decentralization promotes earlier diagnosis and interven-
tion. Moreover, digital platforms powered by AI can facilitate 
remote counseling and adherence tracking, helping sustain 
long-term care continuity.137

High-risk populations for primary prevention: Indi-
viduals with obesity, type 2 diabetes, metabolic syndrome, 
or related cardiometabolic risk factors form a critical group 
for preventive strategies. AI-based prediction models inte-
grating routine laboratory and clinical data can identify early 
hepatic involvement, offering a valuable window for timely 
lifestyle or pharmacologic intervention before irreversible fi-
brosis develops.138

Patients enrolled in clinical trials or on pharmaco-
therapy: In advanced clinical settings, AI-driven digital pa-
thology and imaging analytics provide reproducible quantifi-
cation of histologic changes, such as steatosis reduction or 
fibrosis regression.139 These capabilities enhance precision in 
endpoint measurement, optimize trial efficiency, and support 
data-driven therapeutic adjustments.

Clinical scenarios of application
AI integration benefits several key clinical workflows, from 
early detection to long-term management.

Risk stratification and routine screening: When em-
bedded in primary care systems, AI algorithms analyzing EHR 
and imaging data can flag individuals at risk of MASLD.140 
This shift toward proactive, data-informed screening repre-
sents a major step away from reactive treatment models.

Lifestyle management and adherence promotion: 
Mobile health tools and smart wearables can monitor diet, 
exercise, and metabolic indicators in real time.141 Their feed-
back mechanisms encourage behavioral adherence and en-
able personalized guidance through clinician-patient connec-
tivity.

Disease monitoring and follow-up: Remote AI sys-
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tems leveraging wearable sensors allow continuous disease 
tracking beyond clinical visits. They can detect early warning 
signs of progression or noncompliance, reducing reliance on 
in-person follow-up and improving care accessibility for rural 
populations.142

Drug response monitoring in drug development: In 
drug trials, AI-enhanced imaging (such as MRI-PDFF) and 
computational pathology provide precise, objective meas-
ures of treatment efficacy, such as improvements in fibrosis 
stage or reductions in steatosis burden.143,144 These methods 
streamline endpoint evaluation, improving the efficiency and 
robustness of MASLD drug development.

Strengths, challenges, and future research directions
AI is increasingly recognized as a transformative force in 
healthcare, offering substantial opportunities to enhance 
diagnostic accuracy and clinical decision-making. However, 
realizing its full potential in MASLD management requires 
overcoming substantial technical, ethical, and translational 
challenges through continuous research and validation.

Strengths: Expanding diagnostic and clinical utility: 
Evidence increasingly supports the value of AI in refining di-
agnostic accuracy for hepatic steatosis and fibrosis while re-
ducing interobserver variability. Beyond diagnostics, integra-
tion with wearable and behavioral data enables personalized 
interventions, sustained adherence, and dynamic disease 
tracking. Continuous monitoring of behavioral, metabolic, 
and lifestyle parameters enables tailored recommendations—
ranging from dietary guidance to activity adjustment—while 
reinforcing patient adherence. Parallel progress in AI-driven 
drug discovery and trial optimization further accelerates the 
identification of novel therapeutic targets and the objective 
evaluation of drug efficacy. Collectively, these advances ex-
pand the reach of precision hepatology and strengthen data-
driven care.

Challenges and clinical translation limitations: De-
spite this progress, routine clinical adoption remains lim-
ited. Most AI models rely on retrospective, single-center 
data, constraining generalizability. Moreover, reference 
standards differ widely—ranging from histology to MRI 
or controlled attenuation parameter—hindering compari-
son. The opaque “black-box” characteristics of many deep 
learning systems also impede clinician trust and limit reg-
ulatory approval. Equally pressing are the gaps in study 
populations and outcomes. Patients with viral hepatitis, 
alcohol-related liver disease, or mixed etiologies are fre-
quently underrepresented, and few studies provide robust 
longitudinal or cost-effectiveness data. Beyond technical 
challenges, systemic and social barriers also persist. Cost 
barriers, inadequate digital literacy, and uneven device ac-
cess exacerbate disparities, especially across rural or low-
income communities. Even where devices are available, 
age, education, and cultural norms may limit engagement. 
Advanced imaging technologies such as MRI, though pow-
erful, remain concentrated in tertiary centers and entail 
high costs, reinforcing inequity. Without targeted digital in-
clusion strategies, these innovations risk amplifying rather 
than reducing healthcare inequity.

Future research directions
Bridging the divide between laboratory innovation and re-
al-world application is now a central goal for AI in MASLD. 
Future research must target current gaps—limited external 
validation, inadequate multimodal integration, and scarce re-
al-world evidence—through a deliberate and iterative trans-
lational framework.

First, algorithmic innovation and data fusion are essential. 
The next generation of models should be interpretable, resil-
ient, and computationally efficient, capable of integrating im-
aging, clinical, biochemical, and behavioral data. Techniques 
such as foundation models, transfer learning, and even QML 
may offer pathways to improved adaptability, particularly in 
low-data or resource-constrained settings.

Second, systematic validation and consensus-building 
must follow. Large-scale, multicenter cohorts across diverse 
populations are vital to ensure external robustness. Stand-
ardized annotation protocols, harmonized evaluation met-
rics, and shared reference datasets would further support 
reproducibility and comparability across platforms.

Third, ethical and regulatory translation must advance in 
parallel with technological progress. XAI and privacy-pre-
serving strategies such as federated learning can strengthen 
transparency and data security, fostering clinical and regula-
tory acceptance.

Finally, real-world implementation should become an inte-
gral part of future studies. Pilot deployments within clinical 
environments, supported by adaptive policy frameworks, can 
evaluate usability, workflow compatibility, and economic im-
pact. Continuous learning systems that incorporate patient-
generated data and digital biomarkers can, in turn, support 
dynamic, personalized management. Collectively, these co-
ordinated efforts provide a pragmatic roadmap for transform-
ing AI-driven MASLD research into tangible clinical benefit.

Conclusions
The integration of AI and smart devices is progressively re-
shaping the comprehensive management framework for 
MASLD, offering novel perspectives on improving clinical 
outcomes. By harnessing diverse datasets, including EHR 
and imaging studies, AI-based predictive tools have greatly 
enhanced early disease detection, particularly in primary 
care and for identifying at-risk individuals before symptom 
onset. In the field of imaging diagnosis, AI-based quantita-
tive analysis technologies for ultrasound, CT, and MRI have 
effectively overcome the limitations of traditional methods 
in terms of sensitivity and subjectivity, making reliable as-
sessment more accessible in non-specialist settings. Beyond 
standard imaging modalities, AI’s analytical power is also be-
ing applied to digital pathology. Emerging algorithms, such 
as QML, have demonstrated high accuracy in liver pathology 
image recognition, opening up new avenues for non-invasive 
diagnostic methods. Meanwhile, wearable devices allow re-
al-time tracking of metabolic parameters. When paired with 
AI algorithms, these systems can generate personalized, 
adaptive intervention plans, marking a shift from traditional, 
experience-based lifestyle guidance to a more precise, data-
centric management model, which is crucial for long-term 
patient engagement and adherence. In drug discovery, AI-
assisted virtual screening technology has accelerated the 
discovery and clinical translation of various novel targeted 
drugs. A typical example is the THR-β agonist Resmetirom, 
in whose development AI-assisted virtual screening played a 
pivotal role in candidate selection and optimization, thereby 
accelerating its path to clinical application and supporting 
the principles of precision medicine. Despite these impres-
sive advances, translating AI innovations into routine MASLD 
care continues to face considerable technical and structural 
obstacles. The opacity of complex models undermines clinical 
trust, while privacy regulations restrict the multi-center data 
sharing needed for robust generalization. Overcoming these 
barriers requires a concerted effort that integrates technical 
innovation with rigorous ethical and regulatory frameworks. 
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Future priorities should include developing XAI and privacy-
preserving computation, alongside establishing standardized 
validation and regulatory pathways to ensure model safety 
and equity. In the long run, successful clinical integration will 
depend on comprehensive multi-center validation across di-
verse populations and rigorous cost-effectiveness analyses.

With the continuous advancement of technologies such as 
deep learning and quantum computing, as well as improve-
ments in the performance of mobile sensing devices, the full-
cycle management of MASLD will become more intelligent, 
accurate, and personalized, which will help build a more ef-
ficient chronic disease management system.
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