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Abstract

Metabolic dysfunction-associated steatotic liver disease (MA-
SLD) is now considered to be among the most prevalent
chronic liver diseases worldwide. Its comprehensive man-
agement encompasses multiple stages, including risk assess-
ment, early detection, stratified intervention, and long-term
follow-up. Among these, improving diagnostic accuracy and
optimizing individualized therapeutic strategies remain key
challenges in both research and clinical practice. In recent
years, artificial intelligence and smart devices have devel-
oped rapidly and have gradually been applied in the medical
field, offering novel tools and pathways for MASLD risk strati-
fication, non-invasive diagnosis, therapeutic evaluation, and
patient self-management. This review summarizes the cur-
rent applications of artificial intelligence and smart devices
in MASLD care, highlights their benefits and limitations, and
discusses future directions to support precision diagnosis and
treatment strategies.
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SLD) is a chronic liver disease marked by the unregulated
accumulation of lipids within the liver, which is closely linked
to metabolic dysfunction. Patients generally exhibit at least
one cardiovascular metabolic risk factor, such as overweight
or obesity, type 2 diabetes, or other metabolic abnormali-
ties.1.2 Epidemiological estimates demonstrate that the glob-
al prevalence of MASLD has reached approximately 30% of
the adult population.34 MASLD is among the most common
chronic liver conditions globally, characterized by a gradual
progression that starts with simple steatosis and may devel-
op into steatohepatitis, hepatic fibrosis, and eventually lead
to cirrhosis or hepatocellular carcinoma.> Timely identifica-
tion of individuals at elevated risk and the adoption of early,
effective therapeutic strategies are critical to halting MASLD
progression and enhancing long-term prognoses. MASLD is
now recognized as the predominant form of fatty liver dis-
ease globally. Strengthening early detection and interven-
tion efforts in this population plays a pivotal role in prevent-
ing progression to advanced liver disease and mitigating the
overall healthcare burden.® The nomenclature of this disease
has undergone two significant revisions. In 2020, in light
of growing evidence linking obesity and metabolic dysfunc-
tion to disease pathogenesis, experts recommended replac-
ing the term nonalcoholic fatty liver disease (NAFLD) with
metabolic associated fatty liver disease (MAFLD).” Subse-
quently, in 2023, concerns about the potential stigmatization
associated with "MAFLD"” led major international hepatology
associations to advocate for a further revision, officially re-
naming the disease as MASLD. This updated terminology re-
flects a more inclusive diagnostic framework, no longer ex-
cluding patients with comorbid chronic liver conditions such
as viral hepatitis, alcohol use, or drug-induced liver dam-
age.2 Epidemiological studies in U.S. adults have reported
the prevalence of NAFLD, MAFLD, and MASLD to be 18.5%,
19.3%, and 20.8%, respectively, demonstrating a clear up-
ward trend.8 Remarkably, approximately 99% of individuals
meeting NAFLD diagnostic criteria also fulfill the criteria for
MASLD, highlighting a high degree of overlap in their clini-
cal phenotypes. Therefore, findings from previous studies
conducted in NAFLD populations remain largely applicable to
MASLD research and clinical practice.9-11
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Excessive hepatic fat deposition not only causes direct
hepatocellular injury but also induces inflammatory respons-
es, fibrosis progression, and apoptosis. In addition, hepatic
insulin resistance further exacerbates lipid accumulation and
impairs insulin clearance, ultimately creating a vicious cycle
of mutual reinforcement.2:13 Clinical evidence indicates that
individuals with MASLD face significantly elevated risks of
cardiovascular disease, with both prevalence and incidence
surpassing those seen in the general population.’* Thus,
clinical management of MASLD should emphasize compre-
hensive control of cardiometabolic comorbidities, including
obesity, type 2 diabetes, dyslipidemia, and hypertension, to
curb disease advancement and prevent complications.> Cur-
rently, lifestyle intervention remains the foundational strat-
egy for treating MASLD, encompassing scientifically guided
weight loss, balanced diet, and regular physical activity. When
necessary, these approaches can be combined with pharma-
cotherapy or other adjunctive treatments. Additionally, early
identification and correction of associated metabolic disorders
are crucial steps in preventing disease progression.16 In re-
cent years, rapid advancements in artificial intelligence (AI)
and smart devices have led to their increasing integration into
medical practice. Particularly in MASLD research and clinical
practice, Al and smart devices have shown great potential
in risk prediction, disease screening, auxiliary diagnosis, and
personalized treatment. This review synthesizes recent litera-
ture from databases including PubMed, Web of Science, and
Google Scholar to summarize the current applications and
emerging trends of AI and smart devices in MASLD manage-
ment, aiming to inform and guide future clinical strategies.
Furthermore, this review differs from earlier work that mainly
focused on imaging. It provides a broader synthesis that links
Al algorithms, smart device applications, and ethical consid-
erations across the entire MASLD management pathway.

Overview of AI and smart devices

Al integrates a multitude of sophisticated algorithms, en-
compassing machine learning (ML), deep learning, natural
language processing (NLP), data mining, and numerous oth-
ers. ML forms the backbone of this framework. It includes
various supervised models such as convolutional neural net-
works (CNN), decision trees, support vector machines, ran-
dom forests, and gradient boosting algorithms. In addition,
unsupervised, semi-supervised, and reinforcement learning
methods are also incorporated (Fig. 1). Deep learning, a ma-
jor branch of ML, shows particular strength in recognizing
complex patterns and handling high-dimensional data.

In medical research and clinical practice, Al is widely ap-
plied to the analysis and modeling of multidimensional data
based on clinical indicators, biomarkers, and medical imag-
ing, significantly improving early disease detection capabili-
ties, diagnostic accuracy, and the efficiency of personalized
treatment decision-making.l” In disease risk prediction, Al
has the capacity to process large-scale patient data to un-
cover potential risk determinants and estimate the probabil-
ity of disease development. This facilitates the formulation of
individualized preventive strategies tailored to each patient’s
specific risk profile. In medical imaging recognition, Al ena-
bles rapid and accurate detection of underlying pathological
features, improving diagnostic efficiency and significantly re-
ducing the risk of human misjudgment. Additionally, in the
field of personalized treatment, Al can provide customized
therapeutic recommendations based on patients’ unique clini-
cal and physiological parameters, thereby enhancing treat-
ment outcomes.17:18 The application of these technologies not
only significantly reduces the time required for traditional data
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processing and decision-making but also helps overcome sub-
jective biases inherent in human analysis. This demonstrates
important potential for managing chronic diseases, including
MASLD. Meanwhile, advancements in smart device technol-
ogy have also provided new tools for health management.
Devices such as smartphones, wearables, and portable medi-
cal monitors are now equipped with advanced sensors and
multimodal data collection capabilities. They can continuously
track critical health indicators, including body weight, waist-
to-hip ratio, heart rate, glucose levels, and blood pressure.
These devices, combined with AI algorithms for data analysis,
can provide users with personalized and dynamic health feed-
back and intervention recommendations. Figure 2 illustrates
the application of Al technology and smart devices in man-
aging MASLD: through continuous monitoring and dynamic
feedback to enable real-time health tracking and timely ad-
justment of intervention strategies based on data trends.19.20

Application of AI in MASLD risk prediction and diag-
nosis

While liver biopsy remains the gold standard for diagnosing
steatotic liver disease, its invasive nature, associated bleed-
ing risks, and low patient acceptance restrict its feasibility
for widespread use in population-level screening. In recent
years, advances in Al technology have brought new break-
throughs in the early screening of MASLD. By synthesizing a
broad spectrum of individual data, including clinical metrics
such as body mass index (BMI), glucose and lipid profiles,
genetic predispositions, and lifestyle habits, AI can establish
multidimensional, personalized risk prediction models, signif-
icantly improving the efficiency of identifying high-risk indi-
viduals. For example, ML applied to large population cohorts
can effectively identify high-risk individuals with potential
progression from MASLD to metabolic dysfunction-associat-
ed steatohepatitis (MASH), thereby enabling the implemen-
tation of personalized, stratified intervention strategies.?! For
imaging-based assessments of steatotic liver disease, com-
monly employed modalities include ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI).
Ultrasound is frequently used as a screening method due
to its affordability, safety, and non-invasive characteristics.
Nevertheless, its diagnostic sensitivity for early-stage or mild
steatosis is suboptimal and heavily influenced by operator
proficiency. CT can assess the degree of hepatic fat deposi-
tion but is susceptible to interference from factors such as
iron overload and carries the risk of radiation exposure. MRI,
with its high soft tissue resolution and excellent fat quantifi-
cation capability, is considered the current optimal non-inva-
sive quantitative method, though it is relatively more expen-
sive.22:23 With the continuous advancement of Al, especially
ML and deep learning methods, their application in medical
imaging analysis has become increasingly widespread. These
Al-driven tools can autonomously derive numerous quanti-
tative imaging features and apply sophisticated algorithms
or neural networks to support early diagnosis and treat-
ment tracking of fatty liver disease. Multiple studies have
introduced AI-based models for imaging diagnosis of hepatic
steatosis. Subgroup analyses reveal that whether employ-
ing classical ML techniques or more advanced deep learning
architectures, these models demonstrate reliable diagnostic
performance across different populations, reference stand-
ards, imaging techniques, and transfer learning contexts.24

AI-based predictive models using electronic health
records (EHR) and laboratory data

Al shows great promise in processing EHR to construct risk
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Fig. 1. The collaborative operation model of artificial intelligence technol

JL

ogy and smart devices. (Created in BioRender). CNN, convolutional neural net-

works; DT, decision tree; SVM, support vector machine; RF, random forest; GB, gradient boosting.

assessment models for MASLD. With the shift in disease
nomenclature from NAFLD to MASLD, whether some non-
invasive tests previously used to predict NAFLD remain ap-
plicable to MASLD has become an urgent issue in research
and clinical practice. Recent studies have shown that cer-
tain non-invasive test tools, such as the fatty liver index,
still have strong discriminatory efficacy in identifying MASLD
risk, suggesting that they retain application value in the new
disease classification framework.2> With the continuous ad-
vancement of AI technology, combining non-invasive tests
with Al algorithms is anticipated to further streamline MA-
SLD screening workflows—enhancing diagnostic efficiency
and reducing the burden on healthcare systems. Currently,
commonly used Al methods in EHR-based data analysis in-
clude ML, NLP, data mining techniques, and algorithms based
on International Classification of Diseases coding. By com-
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prehensively analyzing multidimensional information such
as demographic characteristics, lifestyle, physical measure-
ments, and laboratory data contained in EHR, AI models can
predict the risk of MASLD and assess its severity. Over time,
research priorities have clearly evolved. Early studies mainly
compared analyses of methodologies. More recent efforts
have shifted toward building sophisticated, multimodal pre-
dictive systems. For example, Van Vleck et al.26 reported that
NLP outperformed text search and ICD coding in identifying
MASLD cases from EHR data. Later, Bonfiglio et al.?” devel-
oped a model to predict mortality risk, while Yuan et al.?8
created a screening tool for younger individuals based on
standard physical examination indicators.

A significant step forward is seen in the N3-MASH model
proposed by Zhang et al.2° This framework integrates CXCL10
to reflect inflammation, CK-18 to capture apoptosis, and ad-
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Fig. 2. Artificial intelligence and smart devices in clinical management of metabolic dysfunction-associated steatotic liver disease. (Created in BioRender).

justed BMI as a marker of lipid accumulation. Together, these
variables substantially enhance the accuracy of MASH detec-
tion. The model marks a transition from dependence on con-
ventional clinical variables to a mechanism-oriented design
incorporating novel biomarkers.

Furthermore, the application of Al in multi-omics research
is unveiling new insights into disease mechanisms and bi-
omarker discovery. Al technology has also demonstrated
broad application value in metagenomics and metabolomics
research on various biological samples, especially in identify-
ing potential key genes and biomarkers for MASLD and its
different stages of progression. For detailed research results,
please refer to Table 1.21.26:28-34 In genomics and transcrip-
tomics, studies by Conway et al.3> and Park et al.3¢ have
utilized deep learning to identify key genes and signaling
pathways, such as the Notch pathway, associated with MASH

Table 1. EHR and laboratory data

severity and hepatic fat accumulation. In metabolomics and
lipidomics, the work of teams like McGlinchey3° and Chiappi-
ni3” has systematically characterized distinct metabolite sig-
natures across disease stages, highlighting the central role
of impaired fatty acid metabolism in MASH. Perveen et al.'s
study, using decision tree analysis, identified high-density li-
poprotein levels as an important predictive marker for the
development of hepatic steatosis.3! Additionally, Al-assisted
analysis of gut microbiome data highlights the potential of
microbial signatures for individualized diagnosis and inter-
vention.38 More importantly, Al's integrative power is reshap-
ing risk assessment for MASLD. Instead of relying solely on
superficial statistical associations, it enables models ground-
ed in biological mechanisms and refined patient subtypes.
By combining clinical data with multi-omics information, Al
systems can define disease endotypes and guide tailored

Author Country Year ::iaetsego- Methods Indicators Result
Zhang X et al.?® China 2025 MASH N3-MASH CXCL10, CK-18, BMI AUC: 0.857
Park IG et al.32 Korea 2024 MASLD SVM,RF,CNN  Genomic DNA AUC: 0.93
YuanY et al.28 China 2024 MASLD Nomogram Age, Gender, BMI, Waist- AUC: 0.875
model to-hip ratio, ALT, LDL-c,
HDL-c, UA, and smoking
McTeer M et al.?! UK et al. 2024 MASH XGBoost MASLD dataset in Europe AUC: 0.899
Zhu Q et al.33 China 2022 NASH RF 4 lipid molecules AUC: 0.923
McGlinchey Sweden 2022 NAFLD ML Clinical data AUC: F (0-1 vs 2-4)
AJ et al.3° et al. = 0.746, F (0-2
vs 3-4) = 0.778
Kordy K et al.34 USA 2021 NASH RF Oral and fecal microbiome, AUC: 0.99
plasma metabolites
Van Vleck USA 2019 NAFLD NLP EHR Specificity: 89%,
TT et al.?® Sensitivity: 93%
Perveen S et al.31  Pakistan 2018 NAFLD DT EHR AUC: 0.73

AUC, area under the curve; CNN, convolutional neural networks; DT, decision tree; EHR, electronic health records; F, fibrosis; ML, machine learning; NLP, natural lan-
guage processing; NASH, non-alcoholic steatohepatitis; RF, random forest; SVM, support vector machine; XGBoost, eXtreme gradient boosting.
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therapeutic strategies. This progression signals a move to-
ward true precision medicine in metabolic liver disease.

AI-based diagnostic models using imaging data

Al technology, especially through ML and deep learning mod-
els, is playing a growing role in liver imaging, enhancing the
accuracy and speed of disease identification and diagnosis. In
clinical evaluation, MASLD imaging typically follows a three-
step sequence. Ultrasound serves as the first-line screening
tool, with AI assisting in automated detection and grading of
steatosis. CT often identifies hepatic fat incidentally during
unrelated scans, where Al can quantify fat content retrospec-
tively. MRI then provides confirmation and precise quantifica-
tion, while AI improves workflow efficiency and interpretive
accuracy. In recent years, researchers have developed vari-
ous quantitative fat analysis methods based on ultrasound,
CT, and MRI, enabling clinicians to more accurately assess
the degree of hepatic lipid accumulation and fibrosis stag-
ing. These methods achieve precise quantification of steato-
sis and fibrosis by automatically extracting key imaging fea-
tures, providing critical support for early diagnosis, disease
staging, and intervention decision-making.3°

Ultrasound imaging: Ultrasound examination, as a
commonly used imaging modality for diagnosing MASLD, is
widely applied in clinical practice. Nonetheless, several limi-
tations persist. Diagnostic accuracy still depends on operator
expertise and subjective interpretation. Ultrasound, although
sensitive for moderate to advanced steatosis, struggles with
mild cases. Subtle steatosis remains difficult to detect, as
assessments largely rely on qualitative echogenicity rather
than quantitative measures.*? Traditional ultrasound imag-
ing is primarily based on the nonlinear interaction between
linearly propagated ultrasonic pulses and tissues, generating
harmonic frequencies. Among these, the second harmonic is
widely used in clinical image optimization due to its improved
signal-to-noise ratio, clear boundaries, and reduced artifacts.
However, while qualitative features such as enhanced ech-
oes can be detected when hepatic fat content is elevated,
sensitivity remains insufficient for mild fat accumulation. To
overcome the limitations of traditional ultrasound, various
quantitative ultrasound techniques have been developed in
recent years, including elastography, echo signal analysis,
and speckle pattern modeling. These methods provide more
precise quantitative data on tissue characteristics. For exam-
ple, ultrasound elastography applies acoustic radiation force
pulses via a transducer to measure shear wave velocity with-
in liver tissue, which correlates with tissue stiffness, serving
as a non-invasive indicator of fibrosis. Additionally, some al-
gorithms convert the degree of ultrasound attenuation into a
controlled attenuation parameter to quantify hepatic fat con-
tent. However, these techniques are susceptible to interfer-
ence from subcutaneous fat thickness and intercostal space
width in obese individuals, which can affect the accuracy of
the measurements.4! The integration of Al into ultrasound
diagnostics has opened new avenues for MASLD detection.
By integrating multiple ultrasound imaging features, Al can
more accurately assess liver structure and functional status.
In recent years, researchers have conducted several explora-
tory studies in this field, with relevant findings summarized in
Table 2.42-61 Various research groups have incorporated deep
learning, CNN, and large language models to significantly
boost the diagnostic accuracy and efficiency of sonographic
imaging. Through algorithm optimization and improvements
in image processing techniques, Al has enabled quantita-
tive analysis and grading assessment based on traditional
ultrasound, thereby providing a more convenient and reliable
approach for MASLD screening and classification. A critical

synthesis of recent advancements highlights several distinct,
yet complementary, strategies for applying Al to ultrasound-
based MASLD diagnosis. These developments move beyond
mere automation. They represent a fundamental expansion
of ultrasound’s diagnostic capability. The first approach cent-
ers on improving diagnostic accuracy directly from standard
B-mode images. For instance, Kaffas AE et al.*2 showed that
a deep learning framework could markedly increase both
the sensitivity and the accuracy of MASLD diagnosis using
routine ultrasound scans. Their findings suggest that Al can
uncover subtle imaging cues overlooked in manual interpre-
tation. A second line of work focuses on the automation and
standardization of semi-quantitative metrics. This strategy
aims to make results more reproducible and less depend-
ent on operator expertise. The Al system developed by the
Santoro group illustrates this point well.#3 It automatically
calculates the liver-to-kidney ratio, minimizing inter-operator
variation and improving consistency across centers. Most no-
tably, a third and transformative direction uses Al to derive
quantitative data directly from conventional scans. Models
trained on extensive, multi-source datasets that include dif-
ferent scanners and imaging protocols can now estimate liver
fat content with high precision. Remarkably, their perfor-
mance rivals, and in some cases exceeds, that of specialized
tools such as FibroScan.®2 Collectively, these studies mark a
transformative shift for ultrasound in MASLD. AI is not only
augmenting conventional practices but also equipping the
modality with novel quantitative capabilities, once exclusive
to advanced technologies, thereby significantly boosting its
clinical utility.

CT imaging: CT remains a widely utilized tool in clini-
cal imaging, offering reliable quantification of liver fat, yet
its dependence on manual region-of-interest placement
makes the process slow, operator-dependent, and unsuit-
able for large-scale screening. This inherent limitation has
positioned full automation as both the central goal and the
main advantage of Al in CT-based MASLD evaluation. Recent
research efforts have shifted toward automating CT image
analysis using deep learning approaches to facilitate MASLD
diagnosis. This technology automatically segments the liver
region, identifies features of fat deposition, and subsequently
quantifies the degree of hepatic steatosis, thereby providing
clinicians with supportive diagnostic information. As summa-
rized in Table 3,63-71 the research trajectory clearly shows a
shift from proof-of-concept automation to validation in large-
scale, real-world populations. Following the early validation
by Graffy et al.,®3 Martin-Saladich et al.6* advanced the field
with a fully automated voxel-level framework. Their system
achieved excellent cross-device reproducibility and eliminat-
ed manual input. The deep learning model aligned closely
with manual readings and captured expected associations
between steatosis, age, and BMI, reinforcing the biological
credibility of Al-derived quantifications. Further refinements
have aimed to improve accuracy and integration into clinical
workflows. Studies by Prinz et al.®> and Huo et al.,® both us-
ing CNN architectures, reported consistently high agreement
between automated and manual fat quantification across
multiple metrics. Collectively, the evidence indicates that Al
is no longer merely replicating human measurements. It fre-
quently surpasses them in speed, consistency, and spatial
coverage, extending analysis from limited region-of-interest
samples to whole-liver assessment. In essence, Al-driven
automation is transforming CT from a qualitative or semi-
quantitative method into a robust, high-throughput platform
for MASLD screening and monitoring. By eliminating the bot-
tlenecks of manual analysis, Al unlocks new potential for
opportunistic screening within the vast number of CT scans
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Table 3. CT

Author Country Year Categories Methods Sample size Reference standard Result

Kim HY et al.6” Korea 2025 Hepatic DL 3,620 Liver biopsy AUC: 0.868
steatosis subjects

Vong T et al.58  USA 2025 Hepatic LLM 200 adults Labeled CT reports Accuracy: 0.988,
steatosis Sensitivity: 0.98,

Specificity: 1

Martin-Saladich Spain 2024 MAFLD nn-UNet 39 patients Manually assessed AUC: 0.94

Q et al.%4 by specialists

Yoo J et al.®® Korea 2024 Hepatic DL 362 adults MRS-PDFF AUC: 0.817
steatosis

Jeon SK Korea 2024 Hepatic DL 252 MRS-PDFF AUC: 0.806

et al.”’® steatosis participants

Prinz S et al.®> Germany 2023 Hepatic CNN 197 patients Manual ROIs 0.75<AUC<0.87
steatosis

Pickhardt USA 2021 Hepatic DL 1,204 Unenhanced CT AUC: PDFF = 5%

P] et al.”t et al. steatosis healthy = 0.669, PDFF

adults > 10% = 0.854

Graffy PM Madison 2019 NAFLD DL 9,552 adults The manual Hounsfield R2: 0.92

et al.e3 unit measures

Huo Y et al.’¢  USA 2019 NAFLD CNN 246 subjects Abdominal CT scans with ~ Pearson

manual liver segmentation correlations
= 0.94

CT, computed tomography; AUC, area under the curve; CNN, convolutional neural networks; DL, deep learning; LLM, large language models; nn-UNet, neural network-

UNet; R?, coefficient of determination; ROI, region of interest.

acquired for unrelated reasons. This shift adds significant
value to everyday imaging practice and paves the way for
population-level steatosis surveillance.

MRI imaging: MRI, as a non-invasive technique for he-
patic fat quantification, has been widely used in both re-
search and clinical practice. Common MRI-based fat quan-
tification methods include magnetic resonance spectroscopy
(MRS), fat-suppressed imaging, water-fat separation tech-
niques, and proton density fat fraction (PDFF). Among these,
MRS is considered one of the most precise for non-invasively
quantifying intrahepatic fat. It can sensitively detect meta-
bolic changes and pathophysiological states in living tissue
and has advantages such as low measurement variability,
high correlation with histology, and results that are not af-
fected by liver fibrosis, iron deposition, or dietary factors.”?
However, a limitation of MRS is that it can only quantify fat
content in a single localized region, making it difficult to
comprehensively assess fat distribution throughout the en-
tire liver. In contrast, the PDFF technology can reflect the fat
content of the entire organ. After multi-factor correction, its
quantitative accuracy is highly consistent with MRS and is
regarded as a dependable indicator for assessing steatosis.
Both MRI-PDFF and MRS have demonstrated strong concord-
ance with histopathological steatosis grading and offer high
diagnostic accuracy for the clinical classification of hepatic fat
content.’3.74 Rather than revalidating MRI-based fat quanti-
fication—which is already well established—current research
focuses on workflow optimization, computational efficiency,
and improved clinical accessibility. As outlined in Table 4,74-81
recent deep learning advances are systematically resolv-
ing major limitations in MRI analysis. A leading direction
involves automating labor-intensive steps. Marti-Aguado et
al.”> developed a CNN algorithm for automated whole-liver
segmentation, achieving fat quantification results with strong
histological concordance. Another stream of innovation tar-
gets refinement of the PDFF metric through advanced neu-
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ral networks. With the advancement of Al technology, per-
formance evaluation of metrics such as PDFF has also been
optimized. Wang et al.”’® used deep learning to infer PDFF
values with high precision, reinforcing its reliability as an im-
aging biomarker. Meneses et al.”” proposed the Variable Echo
Times Neural Network, which delivered more accurate PDFF
estimation than conventional architectures. Despite these
technical gains, clinical translation of MRI-PDFF and MRS re-
mains constrained by high cost, specialized hardware, and
long acquisition times. Consequently, these modalities are
mostly applied in research contexts or for evaluating high-
risk patients rather than general screening. Thus, although
Al has greatly advanced the precision, automation, and in-
terpretability of MRI-based fat quantification, these methods
remain endpoints within the diagnostic pathway, not tools for
population-level screening.

AlI-based analytical models for liver histopathology

Liver biopsy continues to serve as the diagnostic gold stand-
ard for MASLD. However, its invasiveness, sampling error, and
subjective scoring limit its routine use. In response, Al and
digital pathology are redefining histological assessment, of-
fering objective, reproducible, and scalable tissue evaluation.
New algorithms can now automatically detect and quantify
key histological features from biopsy samples, such as fat ac-
cumulation, lobular inflammation, ballooning degeneration,
and fibrosis. The results demonstrate high concordance with
assessments made by experienced pathologists. A critical re-
view of ongoing research reveals a multi-faceted evolution in
Al-assisted liver pathology. This shift is not simply incremen-
tal—it reflects a conceptual reorientation toward algorithm-
supported diagnostics. Al-driven image analysis systems can
perform precise evaluations of digitized histological slides,
automatically identifying core pathological changes associ-
ated with MASLD. Among these, hepatocyte ballooning is a
key morphological marker for diagnosing MASLD. The ad-
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Catego- Meth- . Reference
Author Country Year ries ods Sample size standard Result
Meneses Chile 2025 Hepatic  VET- 188 subjects MRI-PDFF R2: 0.87-0.98
JP et al.”’ steatosis Net
Li S et al.7”8 China 2024 NAFLD DL 20 subjects Graph-cut No significant difference
algorithm
Wang K USA 2023 NAFLD CNN 292 CSE-MRI CNN-inferred PDFF showed
et al.”6 participants superior agreement with reference
(ICC = 0.99, bias = —0.19%)
Bastati N Austria 2023 NAFLD ubDC 46 patients Histology AUC: 0.85
et al.”®
Kim JW Korea 2022 NAFLD MRS, 47 patients Biopsy AUC: =2S2 (MRS) = 0.860, (MRI-
et al.74 MRI- PDFF) = 0.846, =S3 (MRS) =
PDFF 0.878, (MRI-PDFF) = 0.855
Marti- Spain 2022 NAFLD DL 165 Biopsy AUC: 0.97
Aguado D participants
et al.’s
Pollack BL  Pittsburgh 2021 NAFLD CNN 149 patients Biopsy AUC: 0.84
et al.8o
Cho Y et Korea 2021 NAFLD DL 77 samples Manual Step 3: Dice Coefficients 0.94 =
al.8t Segmentation 0.01, Bland-Altman bias —0.67%

MRI, magnetic resonance imaging; AUC, area under the curve; CNN, convolutional neural networks; DL, deep learning; UDC, unsupervised deep clustering; VET-Net,
variable echo times neural network; ICC, intraclass correlation coefficient; R2, coefficient of determination; ROI, regions of interest; S, steatosis grades; WLS, whole-

liver segmentation.

vancement of digital pathology helps overcome limitations
of traditional manual slide reading, such as low annotation
efficiency and high subjective variability, by enhancing di-
agnostic objectivity and consistency through high-resolution
image acquisition and algorithmic analysis. The combination
of high-resolution slide digitization with algorithmic analysis
enhances diagnostic precision and facilitates standardization
across centers. Yet, methodological gaps persist. The scar-
city of large, annotated, and diverse datasets limits gener-
alizability, especially across staining methods, scanners, and
populations. Future research urgently needs to construct a
large-scale, standardized image database of ballooning de-
generation in liver cells and further optimize algorithm struc-
tures (such as introducing the Transformer architecture) to
improve recognition accuracy. As generative Al continues
to mature, the establishment of standardized performance
criteria will be crucial for validating its role in augmenting
diagnostic consistency.82 Traditional ML models typically de-
pend on extensive labeled datasets to reach high precision,
and their deployment in clinical practice is often hampered
by concerns over patient privacy and data sensitivity. To this
end, the emerging quantum machine learning (QML), as an
interdisciplinary technology that fuses quantum computing
and classical ML, shows stronger generalization ability and
modeling accuracy. Lusnig et al.83 demonstrated the poten-
tial of hybrid quantum-classical neural networks, achieving
97% accuracy in classifying biopsy slides. This approach per-
formed particularly well under data-limited conditions, sug-
gesting that QML may address two persistent challenges:
the need for extensive annotation and the protection of data
privacy. Beyond static diagnosis, Al is now enabling dynam-
ic disease monitoring. Naoumov et al.8* integrated Al with
digital pathology to track histological changes during MASH
therapy. Their system provided greater sensitivity in detect-
ing fibrosis regression and enabled more dynamic evaluation
of therapeutic efficacy. Together, these advances represent
more than automation. They signal a paradigm shift—from

subjective interpretation toward reproducible, data-driven
quantification—reshaping the epistemological foundation of
liver pathology itself.

Treatment of MASLD

The treatment of MASLD primarily includes lifestyle modi-
fication and pharmacotherapy (Table 5).85-94 The conver-
gence of AI and smart devices is reshaping these traditional
strategies, promoting a shift from standardized care to dy-
namic, personalized, and data-driven management. In life-
style management, patients are advised to control weight,
limit alcohol intake, improve dietary structure, and adhere
to regular exercise. In terms of drug therapy, several drug
candidates are currently in clinical trials. In addition, patients
with chronic hepatitis B who have concomitant metabolic ab-
normalities (such as glucose dysregulation, dyslipidemia, or
overweight) should also be comprehensively evaluated and
actively intervene with their metabolic markers to reduce the
risk of MASLD progression. Probiotic therapy has also been
recognized as potentially valuable in the management of MA-
SLD. It has been shown that probiotics can play a positive
role in improving liver enzyme levels, regulating lipid me-
tabolism, promoting weight control, and alleviating insulin
resistance by modulating intestinal flora.®> Bariatric surgery
has emerged as an alternative treatment option for patients
with MASLD combined with obesity who do not respond well
to lifestyle interventions and medications. Chen S et al.%®
used a multi-omics approach to analyze the support for the
use of sleeve gastrectomy as an effective means of amelio-
rating hepatic steatosis and inflammation when other weight
loss strategies are ineffective.

Lifestyle interventions

Lifestyle-related factors play a pivotal role in the onset and
progression of MASLD. Yuan et al.°’” demonstrated that in-
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Table 5. Treatment

Cat-
Author Country Year egories Drugs Methods Reference Result
Harrison USA 2025 MASH FFAR1/FFAR4 agonist RCT Placebo Response rates:
SA et al.®0 300 mg = 29.3%,
placebo = 11.3%
Ozlu Karahan Turkey 2025 MASLD NA LLM Guidelines Accuracy: mean energy
T et al.®t =91.3+11.0%
Zhang L China 2025 MAFLD Qigui Jiangzhi AlphaFold- pTM scores pTM scores: PRKAA2 =
et al.s8 Formula (QGIZF) Al (range 0-1) 0.97, SIRT1 = 0.93
Harrison UK 2024  NASH Resmetirom RCT Placebo NASH resolution rate:
SA et al.8> 100 mg = 29.9%,
placebo = 9.7%
Wang Y China 2024 NASH LiDi FGF21 LiDi Baseline NAS scores: low-dose
et al.87 platform = 3.83 £ 0.98, high-
dose = 3.33 £ 0.82,
baseline = 6.00 + 0.63
Newsome UK et al. 2023 NASH AOCS3 inhibitor Double- Placebo AOC3 activity relative
PN et al.®2 blind, to baseline: 10 mg =
placebo- 3.3%, Placebo = 90.4%
controlled
Saldarriaga USA 2023 MASLD NA DL Key Upregulated Targets:
OA et al.®® Findings CCR2, CCR5, CCL2,
CCL5, LGALS3
Yu Hetal®® China 2023 NAFLD  Aescin (Aes) HepG2 cell / Aes facilitates Nrf2
models nuclear translocation
Sessa L Italy 2023 NASH 5-hydroxytryptamine SoftMining 5HT2AR- Competitive binding
et al.sé et al. 2A receptor Platform CHO-K1 studies in SHT2AR-
(5-HT2AR) cells CHO-K1 cells validated
the in silico prediction
Lee WY Korea 2022 NAFLD Flavonoids Machine- HepG2/ Screening and
et al.%* learning AML12 cell functional validation of
model: models candidate flavonoids
AI-DTI

ALT, alanine aminotransferase; AOC3, amine oxidase copper-containing 3; DL, deep learning; LiDi, lipidation-dimerization; LLM, large language models; NASH, non-
alcoholic steatohepatitis; RCT, randomized controlled trial; pTM, predicted tem plate modeling; NAS scores, nonalcoholic fatty liver disease activity score.

tensive lifestyle intervention can reverse hepatic fibrosis in
MASH, with Al-assisted imaging revealing the most evident
regression in the portal region. However, maintaining ad-
herence to such interventions remains difficult—particularly
among socioeconomically disadvantaged groups, who often
face higher MASLD risk due to poor dietary habits.%8 Al-ena-
bled smart devices provide scalable and individualized solu-
tions for this challenge.

In recent years, with the help of smart devices combined
with Al algorithms, clinicians can achieve real-time monitor-
ing of patients’ diet, physical activity, and metabolism-relat-
ed indicators, and then generate personalized intervention
programs. For example, a model based on Gradient Boosting
Regression predicts individual postprandial glucose fluctua-
tions and combines gut microbiome data with dietary habits
to optimize an individualized dietary structure.®® They are
especially valuable for patients with prediabetes or type 2
diabetes and MASLD, where precise glycemic control is es-
sential.

Nutritional strategies are fundamental in the prevention
and management of MASLD. Among various dietary pat-
terns, the Mediterranean diet has shown considerable effi-
cacy in lowering hepatic lipid accumulation and improving
metabolic health.1%0 With the support of smart devices and
Al, the implementation of medical nutrition therapy is more

efficient and precise. Patients can use the image recognition
feature to record their daily diet. The system automatically
analyzes the nutritional content and guides them to follow
a healthy diet structure while dynamically adjusting energy
intake based on real-time data. It has been demonstrated
that this type of intelligent system is effective in improving
liver triglyceride levels and other metabolic parameters.10t
This scenario suits motivated individuals who benefit from
structured, feedback-driven dietary support.

With advancements in digital health, smart devices now
offer capabilities such as remote patient monitoring and on-
line follow-up, allowing healthcare providers to track real-
time fluctuations in liver-related biomarkers—including ala-
nine aminotransferase and aspartate transaminase—as well
as body weight. This continuous monitoring facilitates timely
treatment adjustments based on a patient’s clinical progres-
sion. This is equally useful for patients undergoing new drug
therapies or those with advanced fibrosis who require close
follow-up.

Al chatbots are also gradually playing a role in assisted
management, providing not only medication reminders and
health education but also basic psychological support that
can help improve patient compliance. Related studies show
that some AI chatbots currently score high on health-related
questions, but clinical application still requires professional
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medical judgment. With continued algorithm optimization,
their clinical practicality is expected to improve further in the
future.102 In overburdened healthcare systems, Al chatbots
and digital companions can also serve as first-line educa-
tional tools, addressing common patient concerns and rein-
forcing adherence.

Al-powered systems further support individualized care
by integrating clinical data, laboratory results, and histo-
pathological findings to formulate tailored therapeutic plans
that span lifestyle modifications and pharmacologic options.
Mobile health applications and wearable devices are becom-
ing increasingly valuable tools in MASLD care. These tools
enable the ongoing collection of behavioral data, including
physical activity, dietary intake, and sleep metrics, which
supports more precise and dynamic intervention strate-
gies.103 Exercise is another widely accepted intervention
with proven benefits for MASLD. Regular physical activity
not only contributes to weight reduction and decreased
hepatic fat but also elevates high-density lipoprotein cho-
lesterol levels.104 A health management app that combines
Al algorithms can help patients set personalized exercise
plans and dynamically adjust them based on feedback from
wearable sensors. At the same time, these devices can also
monitor indicators such as weight and waist circumference
in real time and work with AI models to predict the poten-
tial effects of weight loss on liver fat improvement. Studies
have shown that achieving a weight loss of over 10% can
result in substantial improvements in MASH and liver fibro-
sis severity.195 Closed-loop feedback mechanisms enhance
motivation, especially for individuals struggling with weight
maintenance, by offering concrete targets and continuous
reinforcement.

Drug development

While pharmacological research into MASLD therapies has
advanced in recent years, only a limited number of medica-
tions have received approval. Drugs currently in late-stage
clinical development include incretin-based therapies like
glucagon-like peptide-1 and its multi-agonists, metabolic
modulators like peroxisome proliferator-activated receptor,
fibroblast growth factor 21 (FGF21), and thyroid hormone
receptor B (THR-B) agonists, or novel drugs targeting new
mechanisms, such as fatty acid synthase inhibitors.106,107
The development of AI technology has significantly acceler-
ated the research and development process of MASLD-relat-
ed drugs in multiple stages. Through virtual screening, struc-
tural prediction, and multi-omics integration analysis, Al has
not only promoted new drug discovery but also driven the
re-development of existing drugs for new indications. For ex-
ample, Resmetirom is a highly selective THR- agonist. A no-
table breakthrough occurred in 2024 when the U.S. Food and
Drug Administration approved Resmetirom as the first drug
for treating MASH. Al-assisted analysis was extensively used
in the target identification, mechanism elucidation, and clini-
cal study design of this drug. In its pivotal Phase III clinical
trial, Al algorithms were used to quantitatively assess chang-
es in liver fibrosis before and after treatment, demonstrating
that Resmetirom has definitive efficacy in significantly im-
proving liver fibrosis.85108,109 Tn addition, the potential of AI
in drug screening and indication expansion continues to be
validated. HuX et al. utilized the DiscoveryStudiol9 platform,
which integrates virtual screening, molecular docking, ADME
property prediction, and toxicity assessment, to screen po-
tential farnesoid X receptor agonists, providing a new drug
candidate idea for MASH treatment.!10 Similarly, Sessa L and
colleagues leveraged AI methodologies to validate the thera-
peutic potential of the 5-hydroxytryptamine 2A receptor,
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identifying its antagonists as promising candidates for MASH
therapy.86 In the field of protein therapy research, Wang Y's
team has developed a new form of bioactive FGF21 based
on the “lipidation-dimerization” platform, named LiDi FGF21.
This molecule demonstrates superior pharmacological prop-
erties, expanding the application prospects of protein-based
drugs in the treatment of MASLD.87 Al technology also pro-
vides new insights into the modernization of traditional Chi-
nese medicine. Zhang L et al. identified potential target pro-
teins for the traditional Chinese medicine compound QGJZF
in MASLD using the SymMap database and predicted the
structures of its key proteins using AlphaFold, revealing that
it may exert anti-adipogenic and anti-inflammatory effects
through the AMPK/SIRT1-TFEB pathway.88 Furthermore, Sal-
darriaga et al. applied deep learning to multi-dimensional
datasets in fatty liver fibrosis, identifying disease-stage-de-
pendent heterogeneity in macrophage populations and high-
lighting CCR2 and Galectin-3 as potential therapeutic targets
in advanced MASLD.8°

In summary, Al is fundamentally reshaping MASLD drug
discovery by accelerating target identification, optimizing
clinical trials, and enhancing predictive profiling.111

Ethical, regulatory, and data security considerations

Integrating AI and smart devices into MASLD care thus holds
great promise for improving diagnostic precision and thera-
peutic outcomes.!12 However, its real-world application raises
complex ethical, regulatory, and data security concerns (Fig.
3). Therefore, the development and deployment of AI must
align with ethically grounded frameworks, consistent with
the World Health Organization guidance on the Ethics and
Governance of Al for Health. The World Health Organization
identifies six guiding principles: protecting autonomy; ad-
vancing human welfare and safety; ensuring transparency
and intelligibility; reinforcing accountability; promoting eq-
uity and inclusiveness; and encouraging responsiveness and
sustainability.113

Recent analyses reveal that bias and fairness dominate
ethical discourse, followed by concerns about safety, reli-
ability, transparency, accountability, model misuse, and pri-
vacy—particularly in relation to large language models.114.115
Concurrently, the evolution of Al operates within estab-
lished regulatory structures, which define critical operational
boundaries and reinforce the protection of personal data and
privacy.11® As jurisdictions adapt their own legal standards,
an international consensus toward harmonized regulation is
increasingly essential.

From a technical standpoint, privacy-preserving tech-
niques, such as federated learning and differential privacy,
are vital to building multi-layered safeguards. Only through
such a multidisciplinary approach can these innovative tools
be deployed safely and equitably, upholding the rights and
welfare of individuals in real-world settings.

Ethical AI for MASLD

Algorithmic bias and health disparities: The perfor-
mance and generalizability of AI models depend critically
on the diversity of their training data. When development
datasets are disproportionately sourced from limited demo-
graphic segments, such as particular ethnic, geographic, or
socioeconomic groups, models are prone to substantial per-
formance decline in clinically underrepresented populations.
This not only reduces clinical reliability but may also amplify
existing health inequities.11” To mitigate such effects, it is
essential to systematically construct diverse and inclusive
training cohorts and incorporate bias detection and mitiga-
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Fig. 3. Responsible Artificial intelligence in metabolic dysfunction-associated steatotic liver disease: A framework built on ethics, regulation, and
security. (Created in BioRender). Al, artificial intelligence; MASLD, metabolic dysfunction-associated steatotic liver disease; HIPAA, health insurance portability and
accountability act; GDPR, general data protection regulation; PDPO, personal data (privacy) ordinance; APPI, act on the protection of personal information.

tion protocols across the entire model lifecycle. These strat-
egies should consider local context—target demographics,
deployment settings, algorithm type, and the specific biases
being addressed.!18

Transparency and explainability: Many advanced Al
systems, particularly deep learning-based systems, func-
tion as “black boxes” due to their inherently opaque internal
decision logic, which remains largely inaccessible to human
interpretation. For healthcare providers to trust Al-based di-
agnostic aids, such as hepatic steatosis grading, transpar-
ency in algorithmic reasoning is essential.!® Explainable AI
(XAI) addresses this need by employing both global and local
interpretability techniques to uncover salient features con-
tributing to predictive outcomes. This capacity to elucidate
model behavior is critical for fostering informed clinical ac-
ceptance and enabling the responsible embedding of AI tools
into medical practice.120

Accountability and human oversight: Excessive de-
pendence on Al in medical contexts can lead to significant
errors in areas such as predictive analytics, system over-
sight, device selection, and even clinical decision-making.
Many AI models are often inadequately trained on specific
features, such as dialects and medical colloquialisms; they
risk generating inaccurate diagnoses, medication explana-

tions, or treatment recommendations.?! It is therefore es-
sential to reaffirm that AI serves strictly as an adjunctive
decision-support mechanism rather than as an autonomous
clinical authority. The final judgment and accountability for
all diagnostic or therapeutic decisions must rest with quali-
fied healthcare professionals. These practitioners must criti-
cally appraise algorithm-generated suggestions and retain
the ultimate decision-making power, ensuring consistent hu-
man oversight and intervention throughout patient care.

Regulatory frameworks

The development and deployment of medical AI must occur
within a robust regulatory framework, with the core objective
of safeguarding patient data privacy and security. Several
major frameworks currently provide guidance for this evolv-
ing landscape.

Health Insurance Portability and Accountability Act
(HIPAA): In the United States, HIPAA stands as a founda-
tional statute safeguarding Protected Health Information.122
Despite its importance, HIPAA's jurisdiction is incomplete—it
excludes data handled by non-covered entities, omits pa-
tient-generated content, and overlooks extensive non-health
datasets that can indirectly reveal health conditions. To es-
tablish comprehensive protection for the health information
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ecosystem, it is imperative to either expand HIPAA's applica-
bility or create a separate regulatory regime for currently un-
covered health-related data. Proposed legislative pathways
include enacting a general health data protection rule sup-
plemented by specific provisions for different data proces-
sors, or adopting a unified framework inspired by the EU’s
General Data Protection Regulation (GDPR) that applies to all
personal data processors while incorporating dedicated rules
for health information.123

GDPR: The European Union’s GDPR regulation has be-
come a global benchmark for personal data governance.124
It mandates strict adherence to the principles of lawfulness,
fairness, and transparency in all stages of data processing.
Under GDPR, information must be collected for clearly de-
fined and legitimate purposes (purpose limitation), and only
the minimal data necessary for those purposes may be pro-
cessed (data minimization). Controllers remain fully account-
able for compliance with these standards. In MASLD-related
studies involving EU participants, explicit informed consent
and transparent data handling practices are indispensable,
reflecting the regulation’s emphasis on autonomy and ac-
countability.

Other international frameworks: Comparable data
protection systems have been enacted in multiple jurisdic-
tions. Prominent examples encompass the Personal Data
(Privacy) Ordinance(PDPO) in Hong Kong, China!2> and Ja-
pan’s Act on the Protection of Personal Information(APPI).126
Both are grounded in the shared values of purpose limitation,
proportionality, and accountability, offering principled over-
sight of personal data processing.

Nevertheless, legal compliance alone does not guarantee
full protection.127:128 Tt underscores the necessity for multi-
layered privacy-preserving architectures in AI-driven MASLD
research.

Data privacy and security strategies

To navigate these complex regulatory terrains and mitigate
privacy risks, advanced technical safeguards have been pro-
gressively incorporated into Al systems.129

De-identification: De-identification aims to remove or
obscure personal identifiers from data. In structured data,
methods such as polymorphic encryption have improved re-
silience against re-identification while maintaining analytical
utility. Moreover, large language models are now capable of
achieving higher accuracy in automatic de-identification of
unstructured text, substantially improving privacy protection
for clinical narratives.!30

Differential privacy: Differential privacy introduces cali-
brated random noise into datasets or query results, thereby
ensuring that the inclusion or exclusion of any single indi-
vidual cannot be inferred.13! This approach ensures that the
presence or absence of any individual in the dataset cannot
be inferred from the analysis results, while still preserving
the accuracy of statistical findings at the aggregate level.

Federated learning: Federated learning enables distrib-
uted model training across multiple institutions without the
exchange of raw data. This paradigm is particularly advanta-
geous for multicenter MASLD studies, allowing algorithmic
generalization and cross-population robustness while keep-
ing sensitive data localized within each contributing hospital
or research site.!32

Synthetic data generation: Synthetic data technology
creates artificial datasets that mimic the statistical properties
of real-world data but exclude actual patient information.133
Such datasets can be used safely for model testing and al-
gorithm refinement, effectively eliminating privacy concerns
inherent in traditional EHR-based development.
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Clinical translation of AI in MASLD: Beneficial popu-
lations, clinical scenarios, and future pathways

This section explores the transition of AI from research pro-
totypes to real-world applications in MASLD management. It
identifies the clinicians and patient populations most likely to
benefit and highlights key clinical scenarios where these tools
add measurable value. Within this framework, AI emerges
not merely as a computational instrument but as a strategic
enabler of precision medicine and more equitable healthcare
delivery.134

Populations that would benefit most

Al technologies hold considerable promise for improving MA-
SLD management—enhancing diagnostic accuracy, facilitat-
ing early intervention, and widening access to care, espe-
cially in resource-limited settings.135 They also contribute to
objective evaluation metrics in clinical research and thera-
peutic trials.

Healthcare professionals: For physicians in hepatology,
radiology, or primary care, Al-based decision support offers
substantial gains. By reducing observer variability and high-
lighting subtle imaging features, such systems improve diag-
nostic confidence and consistency. They can also automate
repetitive workflows—such as steatosis quantification—and
prioritize high-risk cases. For junior clinicians or those out-
side tertiary centers, these tools function as valuable learn-
ing aids and clinical references.!36

Populations in resource-limited settings: In un-
derserved areas lacking hepatology expertise, Al-enabled
portable ultrasound and automated image analysis can de-
centralize screening from hospitals to communities. This
decentralization promotes earlier diagnosis and interven-
tion. Moreover, digital platforms powered by Al can facilitate
remote counseling and adherence tracking, helping sustain
long-term care continuity.137

High-risk populations for primary prevention: Indi-
viduals with obesity, type 2 diabetes, metabolic syndrome,
or related cardiometabolic risk factors form a critical group
for preventive strategies. Al-based prediction models inte-
grating routine laboratory and clinical data can identify early
hepatic involvement, offering a valuable window for timely
lifestyle or pharmacologic intervention before irreversible fi-
brosis develops.138

Patients enrolled in clinical trials or on pharmaco-
therapy: In advanced clinical settings, Al-driven digital pa-
thology and imaging analytics provide reproducible quantifi-
cation of histologic changes, such as steatosis reduction or
fibrosis regression.32 These capabilities enhance precision in
endpoint measurement, optimize trial efficiency, and support
data-driven therapeutic adjustments.

Clinical scenarios of application

Al integration benefits several key clinical workflows, from
early detection to long-term management.

Risk stratification and routine screening: When em-
bedded in primary care systems, Al algorithms analyzing EHR
and imaging data can flag individuals at risk of MASLD.140
This shift toward proactive, data-informed screening repre-
sents a major step away from reactive treatment models.

Lifestyle management and adherence promotion:
Mobile health tools and smart wearables can monitor diet,
exercise, and metabolic indicators in real time.14! Their feed-
back mechanisms encourage behavioral adherence and en-
able personalized guidance through clinician-patient connec-
tivity.

Disease monitoring and follow-up: Remote AI sys-
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tems leveraging wearable sensors allow continuous disease
tracking beyond clinical visits. They can detect early warning
signs of progression or noncompliance, reducing reliance on
in-person follow-up and improving care accessibility for rural
populations.142

Drug response monitoring in drug development: In
drug trials, Al-enhanced imaging (such as MRI-PDFF) and
computational pathology provide precise, objective meas-
ures of treatment efficacy, such as improvements in fibrosis
stage or reductions in steatosis burden.143:144 These methods
streamline endpoint evaluation, improving the efficiency and
robustness of MASLD drug development.

Strengths, challenges, and future research directions

Al is increasingly recognized as a transformative force in
healthcare, offering substantial opportunities to enhance
diagnostic accuracy and clinical decision-making. However,
realizing its full potential in MASLD management requires
overcoming substantial technical, ethical, and translational
challenges through continuous research and validation.

Strengths: Expanding diagnostic and clinical utility:
Evidence increasingly supports the value of Al in refining di-
agnostic accuracy for hepatic steatosis and fibrosis while re-
ducing interobserver variability. Beyond diagnostics, integra-
tion with wearable and behavioral data enables personalized
interventions, sustained adherence, and dynamic disease
tracking. Continuous monitoring of behavioral, metabolic,
and lifestyle parameters enables tailored recommendations—
ranging from dietary guidance to activity adjustment—while
reinforcing patient adherence. Parallel progress in Al-driven
drug discovery and trial optimization further accelerates the
identification of novel therapeutic targets and the objective
evaluation of drug efficacy. Collectively, these advances ex-
pand the reach of precision hepatology and strengthen data-
driven care.

Challenges and clinical translation limitations: De-
spite this progress, routine clinical adoption remains lim-
ited. Most AI models rely on retrospective, single-center
data, constraining generalizability. Moreover, reference
standards differ widely—ranging from histology to MRI
or controlled attenuation parameter—hindering compari-
son. The opaque “black-box” characteristics of many deep
learning systems also impede clinician trust and limit reg-
ulatory approval. Equally pressing are the gaps in study
populations and outcomes. Patients with viral hepatitis,
alcohol-related liver disease, or mixed etiologies are fre-
quently underrepresented, and few studies provide robust
longitudinal or cost-effectiveness data. Beyond technical
challenges, systemic and social barriers also persist. Cost
barriers, inadequate digital literacy, and uneven device ac-
cess exacerbate disparities, especially across rural or low-
income communities. Even where devices are available,
age, education, and cultural norms may limit engagement.
Advanced imaging technologies such as MRI, though pow-
erful, remain concentrated in tertiary centers and entail
high costs, reinforcing inequity. Without targeted digital in-
clusion strategies, these innovations risk amplifying rather
than reducing healthcare inequity.

Future research directions

Bridging the divide between laboratory innovation and re-
al-world application is now a central goal for AI in MASLD.
Future research must target current gaps—limited external
validation, inadequate multimodal integration, and scarce re-
al-world evidence—through a deliberate and iterative trans-
lational framework.

First, algorithmic innovation and data fusion are essential.
The next generation of models should be interpretable, resil-
ient, and computationally efficient, capable of integrating im-
aging, clinical, biochemical, and behavioral data. Techniques
such as foundation models, transfer learning, and even QML
may offer pathways to improved adaptability, particularly in
low-data or resource-constrained settings.

Second, systematic validation and consensus-building
must follow. Large-scale, multicenter cohorts across diverse
populations are vital to ensure external robustness. Stand-
ardized annotation protocols, harmonized evaluation met-
rics, and shared reference datasets would further support
reproducibility and comparability across platforms.

Third, ethical and regulatory translation must advance in
parallel with technological progress. XAI and privacy-pre-
serving strategies such as federated learning can strengthen
transparency and data security, fostering clinical and regula-
tory acceptance.

Finally, real-world implementation should become an inte-
gral part of future studies. Pilot deployments within clinical
environments, supported by adaptive policy frameworks, can
evaluate usability, workflow compatibility, and economic im-
pact. Continuous learning systems that incorporate patient-
generated data and digital biomarkers can, in turn, support
dynamic, personalized management. Collectively, these co-
ordinated efforts provide a pragmatic roadmap for transform-
ing AI-driven MASLD research into tangible clinical benefit.

Conclusions

The integration of Al and smart devices is progressively re-
shaping the comprehensive management framework for
MASLD, offering novel perspectives on improving clinical
outcomes. By harnessing diverse datasets, including EHR
and imaging studies, Al-based predictive tools have greatly
enhanced early disease detection, particularly in primary
care and for identifying at-risk individuals before symptom
onset. In the field of imaging diagnosis, Al-based quantita-
tive analysis technologies for ultrasound, CT, and MRI have
effectively overcome the limitations of traditional methods
in terms of sensitivity and subjectivity, making reliable as-
sessment more accessible in non-specialist settings. Beyond
standard imaging modalities, Al's analytical power is also be-
ing applied to digital pathology. Emerging algorithms, such
as QML, have demonstrated high accuracy in liver pathology
image recognition, opening up new avenues for non-invasive
diagnostic methods. Meanwhile, wearable devices allow re-
al-time tracking of metabolic parameters. When paired with
Al algorithms, these systems can generate personalized,
adaptive intervention plans, marking a shift from traditional,
experience-based lifestyle guidance to a more precise, data-
centric management model, which is crucial for long-term
patient engagement and adherence. In drug discovery, Al-
assisted virtual screening technology has accelerated the
discovery and clinical translation of various novel targeted
drugs. A typical example is the THR-B agonist Resmetirom,
in whose development Al-assisted virtual screening played a
pivotal role in candidate selection and optimization, thereby
accelerating its path to clinical application and supporting
the principles of precision medicine. Despite these impres-
sive advances, translating AI innovations into routine MASLD
care continues to face considerable technical and structural
obstacles. The opacity of complex models undermines clinical
trust, while privacy regulations restrict the multi-center data
sharing needed for robust generalization. Overcoming these
barriers requires a concerted effort that integrates technical
innovation with rigorous ethical and regulatory frameworks.
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Future priorities should include developing XAI and privacy-
preserving computation, alongside establishing standardized
validation and regulatory pathways to ensure model safety
and equity. In the long run, successful clinical integration will
depend on comprehensive multi-center validation across di-
verse populations and rigorous cost-effectiveness analyses.

With the continuous advancement of technologies such as
deep learning and quantum computing, as well as improve-
ments in the performance of mobile sensing devices, the full-
cycle management of MASLD will become more intelligent,
accurate, and personalized, which will help build a more ef-
ficient chronic disease management system.
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